This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate way of saying that an ordered pair is in a composition. (Contributed by Scott Fenton, 6-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opelco3 | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 ∘ 𝐷 ) ↔ 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br | ⊢ ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 ∘ 𝐷 ) ) | |
| 2 | relco | ⊢ Rel ( 𝐶 ∘ 𝐷 ) | |
| 3 | 2 | brrelex12i | ⊢ ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 4 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 5 | noel | ⊢ ¬ 𝐵 ∈ ∅ | |
| 6 | imaeq2 | ⊢ ( { 𝐴 } = ∅ → ( 𝐷 “ { 𝐴 } ) = ( 𝐷 “ ∅ ) ) | |
| 7 | 6 | imaeq2d | ⊢ ( { 𝐴 } = ∅ → ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) = ( 𝐶 “ ( 𝐷 “ ∅ ) ) ) |
| 8 | ima0 | ⊢ ( 𝐷 “ ∅ ) = ∅ | |
| 9 | 8 | imaeq2i | ⊢ ( 𝐶 “ ( 𝐷 “ ∅ ) ) = ( 𝐶 “ ∅ ) |
| 10 | ima0 | ⊢ ( 𝐶 “ ∅ ) = ∅ | |
| 11 | 9 10 | eqtri | ⊢ ( 𝐶 “ ( 𝐷 “ ∅ ) ) = ∅ |
| 12 | 7 11 | eqtrdi | ⊢ ( { 𝐴 } = ∅ → ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) = ∅ ) |
| 13 | 12 | eleq2d | ⊢ ( { 𝐴 } = ∅ → ( 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ↔ 𝐵 ∈ ∅ ) ) |
| 14 | 5 13 | mtbiri | ⊢ ( { 𝐴 } = ∅ → ¬ 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ) |
| 15 | 4 14 | sylbi | ⊢ ( ¬ 𝐴 ∈ V → ¬ 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ) |
| 16 | 15 | con4i | ⊢ ( 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) → 𝐴 ∈ V ) |
| 17 | elex | ⊢ ( 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) → 𝐵 ∈ V ) | |
| 18 | 16 17 | jca | ⊢ ( 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 19 | df-rex | ⊢ ( ∃ 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) 𝑧 𝐶 𝐵 ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) ∧ 𝑧 𝐶 𝐵 ) ) | |
| 20 | elimasng | ⊢ ( ( 𝐴 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) ↔ 〈 𝐴 , 𝑧 〉 ∈ 𝐷 ) ) | |
| 21 | 20 | elvd | ⊢ ( 𝐴 ∈ V → ( 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) ↔ 〈 𝐴 , 𝑧 〉 ∈ 𝐷 ) ) |
| 22 | df-br | ⊢ ( 𝐴 𝐷 𝑧 ↔ 〈 𝐴 , 𝑧 〉 ∈ 𝐷 ) | |
| 23 | 21 22 | bitr4di | ⊢ ( 𝐴 ∈ V → ( 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) ↔ 𝐴 𝐷 𝑧 ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) ↔ 𝐴 𝐷 𝑧 ) ) |
| 25 | 24 | anbi1d | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) ∧ 𝑧 𝐶 𝐵 ) ↔ ( 𝐴 𝐷 𝑧 ∧ 𝑧 𝐶 𝐵 ) ) ) |
| 26 | 25 | exbidv | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ∃ 𝑧 ( 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) ∧ 𝑧 𝐶 𝐵 ) ↔ ∃ 𝑧 ( 𝐴 𝐷 𝑧 ∧ 𝑧 𝐶 𝐵 ) ) ) |
| 27 | 19 26 | bitr2id | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ∃ 𝑧 ( 𝐴 𝐷 𝑧 ∧ 𝑧 𝐶 𝐵 ) ↔ ∃ 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) 𝑧 𝐶 𝐵 ) ) |
| 28 | brcog | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ ∃ 𝑧 ( 𝐴 𝐷 𝑧 ∧ 𝑧 𝐶 𝐵 ) ) ) | |
| 29 | elimag | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ↔ ∃ 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) 𝑧 𝐶 𝐵 ) ) | |
| 30 | 29 | adantl | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ↔ ∃ 𝑧 ∈ ( 𝐷 “ { 𝐴 } ) 𝑧 𝐶 𝐵 ) ) |
| 31 | 27 28 30 | 3bitr4d | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ) ) |
| 32 | 3 18 31 | pm5.21nii | ⊢ ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ) |
| 33 | 1 32 | bitr3i | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 ∘ 𝐷 ) ↔ 𝐵 ∈ ( 𝐶 “ ( 𝐷 “ { 𝐴 } ) ) ) |