This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of range in terms of 2nd and image. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrn5 | |- ran A = ( ( 2nd |` ( _V X. _V ) ) " A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom | |- ( E. y E. p E. z ( p = <. y , z >. /\ ( p 2nd x /\ p e. A ) ) <-> E. p E. y E. z ( p = <. y , z >. /\ ( p 2nd x /\ p e. A ) ) ) |
|
| 2 | opex | |- <. y , z >. e. _V |
|
| 3 | breq1 | |- ( p = <. y , z >. -> ( p 2nd x <-> <. y , z >. 2nd x ) ) |
|
| 4 | eleq1 | |- ( p = <. y , z >. -> ( p e. A <-> <. y , z >. e. A ) ) |
|
| 5 | 3 4 | anbi12d | |- ( p = <. y , z >. -> ( ( p 2nd x /\ p e. A ) <-> ( <. y , z >. 2nd x /\ <. y , z >. e. A ) ) ) |
| 6 | vex | |- y e. _V |
|
| 7 | vex | |- z e. _V |
|
| 8 | 6 7 | br2ndeq | |- ( <. y , z >. 2nd x <-> x = z ) |
| 9 | equcom | |- ( x = z <-> z = x ) |
|
| 10 | 8 9 | bitri | |- ( <. y , z >. 2nd x <-> z = x ) |
| 11 | 10 | anbi1i | |- ( ( <. y , z >. 2nd x /\ <. y , z >. e. A ) <-> ( z = x /\ <. y , z >. e. A ) ) |
| 12 | 5 11 | bitrdi | |- ( p = <. y , z >. -> ( ( p 2nd x /\ p e. A ) <-> ( z = x /\ <. y , z >. e. A ) ) ) |
| 13 | 2 12 | ceqsexv | |- ( E. p ( p = <. y , z >. /\ ( p 2nd x /\ p e. A ) ) <-> ( z = x /\ <. y , z >. e. A ) ) |
| 14 | 13 | exbii | |- ( E. z E. p ( p = <. y , z >. /\ ( p 2nd x /\ p e. A ) ) <-> E. z ( z = x /\ <. y , z >. e. A ) ) |
| 15 | excom | |- ( E. z E. p ( p = <. y , z >. /\ ( p 2nd x /\ p e. A ) ) <-> E. p E. z ( p = <. y , z >. /\ ( p 2nd x /\ p e. A ) ) ) |
|
| 16 | vex | |- x e. _V |
|
| 17 | opeq2 | |- ( z = x -> <. y , z >. = <. y , x >. ) |
|
| 18 | 17 | eleq1d | |- ( z = x -> ( <. y , z >. e. A <-> <. y , x >. e. A ) ) |
| 19 | 16 18 | ceqsexv | |- ( E. z ( z = x /\ <. y , z >. e. A ) <-> <. y , x >. e. A ) |
| 20 | 14 15 19 | 3bitr3ri | |- ( <. y , x >. e. A <-> E. p E. z ( p = <. y , z >. /\ ( p 2nd x /\ p e. A ) ) ) |
| 21 | 20 | exbii | |- ( E. y <. y , x >. e. A <-> E. y E. p E. z ( p = <. y , z >. /\ ( p 2nd x /\ p e. A ) ) ) |
| 22 | ancom | |- ( ( p e. A /\ p ( 2nd |` ( _V X. _V ) ) x ) <-> ( p ( 2nd |` ( _V X. _V ) ) x /\ p e. A ) ) |
|
| 23 | anass | |- ( ( ( E. y E. z p = <. y , z >. /\ p 2nd x ) /\ p e. A ) <-> ( E. y E. z p = <. y , z >. /\ ( p 2nd x /\ p e. A ) ) ) |
|
| 24 | 16 | brresi | |- ( p ( 2nd |` ( _V X. _V ) ) x <-> ( p e. ( _V X. _V ) /\ p 2nd x ) ) |
| 25 | elvv | |- ( p e. ( _V X. _V ) <-> E. y E. z p = <. y , z >. ) |
|
| 26 | 25 | anbi1i | |- ( ( p e. ( _V X. _V ) /\ p 2nd x ) <-> ( E. y E. z p = <. y , z >. /\ p 2nd x ) ) |
| 27 | 24 26 | bitri | |- ( p ( 2nd |` ( _V X. _V ) ) x <-> ( E. y E. z p = <. y , z >. /\ p 2nd x ) ) |
| 28 | 27 | anbi1i | |- ( ( p ( 2nd |` ( _V X. _V ) ) x /\ p e. A ) <-> ( ( E. y E. z p = <. y , z >. /\ p 2nd x ) /\ p e. A ) ) |
| 29 | 19.41vv | |- ( E. y E. z ( p = <. y , z >. /\ ( p 2nd x /\ p e. A ) ) <-> ( E. y E. z p = <. y , z >. /\ ( p 2nd x /\ p e. A ) ) ) |
|
| 30 | 23 28 29 | 3bitr4i | |- ( ( p ( 2nd |` ( _V X. _V ) ) x /\ p e. A ) <-> E. y E. z ( p = <. y , z >. /\ ( p 2nd x /\ p e. A ) ) ) |
| 31 | 22 30 | bitri | |- ( ( p e. A /\ p ( 2nd |` ( _V X. _V ) ) x ) <-> E. y E. z ( p = <. y , z >. /\ ( p 2nd x /\ p e. A ) ) ) |
| 32 | 31 | exbii | |- ( E. p ( p e. A /\ p ( 2nd |` ( _V X. _V ) ) x ) <-> E. p E. y E. z ( p = <. y , z >. /\ ( p 2nd x /\ p e. A ) ) ) |
| 33 | 1 21 32 | 3bitr4i | |- ( E. y <. y , x >. e. A <-> E. p ( p e. A /\ p ( 2nd |` ( _V X. _V ) ) x ) ) |
| 34 | 16 | elrn2 | |- ( x e. ran A <-> E. y <. y , x >. e. A ) |
| 35 | 16 | elima2 | |- ( x e. ( ( 2nd |` ( _V X. _V ) ) " A ) <-> E. p ( p e. A /\ p ( 2nd |` ( _V X. _V ) ) x ) ) |
| 36 | 33 34 35 | 3bitr4i | |- ( x e. ran A <-> x e. ( ( 2nd |` ( _V X. _V ) ) " A ) ) |
| 37 | 36 | eqriv | |- ran A = ( ( 2nd |` ( _V X. _V ) ) " A ) |