This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 20-Dec-2008) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfoprab4f.x | ⊢ Ⅎ 𝑥 𝜑 | |
| dfoprab4f.y | ⊢ Ⅎ 𝑦 𝜑 | ||
| dfoprab4f.1 | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | dfoprab4f | ⊢ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfoprab4f.x | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | dfoprab4f.y | ⊢ Ⅎ 𝑦 𝜑 | |
| 3 | dfoprab4f.1 | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | nfv | ⊢ Ⅎ 𝑥 𝑤 = 〈 𝑡 , 𝑢 〉 | |
| 5 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 | |
| 6 | 1 5 | nfbi | ⊢ Ⅎ 𝑥 ( 𝜑 ↔ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) |
| 7 | 4 6 | nfim | ⊢ Ⅎ 𝑥 ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 𝜑 ↔ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) ) |
| 8 | opeq1 | ⊢ ( 𝑥 = 𝑡 → 〈 𝑥 , 𝑢 〉 = 〈 𝑡 , 𝑢 〉 ) | |
| 9 | 8 | eqeq2d | ⊢ ( 𝑥 = 𝑡 → ( 𝑤 = 〈 𝑥 , 𝑢 〉 ↔ 𝑤 = 〈 𝑡 , 𝑢 〉 ) ) |
| 10 | sbequ12 | ⊢ ( 𝑥 = 𝑡 → ( [ 𝑢 / 𝑦 ] 𝜓 ↔ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) ) | |
| 11 | 10 | bibi2d | ⊢ ( 𝑥 = 𝑡 → ( ( 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜓 ) ↔ ( 𝜑 ↔ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) ) ) |
| 12 | 9 11 | imbi12d | ⊢ ( 𝑥 = 𝑡 → ( ( 𝑤 = 〈 𝑥 , 𝑢 〉 → ( 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜓 ) ) ↔ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 𝜑 ↔ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) ) ) ) |
| 13 | nfv | ⊢ Ⅎ 𝑦 𝑤 = 〈 𝑥 , 𝑢 〉 | |
| 14 | nfs1v | ⊢ Ⅎ 𝑦 [ 𝑢 / 𝑦 ] 𝜓 | |
| 15 | 2 14 | nfbi | ⊢ Ⅎ 𝑦 ( 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜓 ) |
| 16 | 13 15 | nfim | ⊢ Ⅎ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑢 〉 → ( 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜓 ) ) |
| 17 | opeq2 | ⊢ ( 𝑦 = 𝑢 → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , 𝑢 〉 ) | |
| 18 | 17 | eqeq2d | ⊢ ( 𝑦 = 𝑢 → ( 𝑤 = 〈 𝑥 , 𝑦 〉 ↔ 𝑤 = 〈 𝑥 , 𝑢 〉 ) ) |
| 19 | sbequ12 | ⊢ ( 𝑦 = 𝑢 → ( 𝜓 ↔ [ 𝑢 / 𝑦 ] 𝜓 ) ) | |
| 20 | 19 | bibi2d | ⊢ ( 𝑦 = 𝑢 → ( ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜓 ) ) ) |
| 21 | 18 20 | imbi12d | ⊢ ( 𝑦 = 𝑢 → ( ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ 𝜓 ) ) ↔ ( 𝑤 = 〈 𝑥 , 𝑢 〉 → ( 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜓 ) ) ) ) |
| 22 | 16 21 3 | chvarfv | ⊢ ( 𝑤 = 〈 𝑥 , 𝑢 〉 → ( 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜓 ) ) |
| 23 | 7 12 22 | chvarfv | ⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 𝜑 ↔ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) ) |
| 24 | 23 | dfoprab4 | ⊢ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) } = { 〈 〈 𝑡 , 𝑢 〉 , 𝑧 〉 ∣ ( ( 𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) } |
| 25 | nfv | ⊢ Ⅎ 𝑡 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) | |
| 26 | nfv | ⊢ Ⅎ 𝑢 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) | |
| 27 | nfv | ⊢ Ⅎ 𝑥 ( 𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) | |
| 28 | 27 5 | nfan | ⊢ Ⅎ 𝑥 ( ( 𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) |
| 29 | nfv | ⊢ Ⅎ 𝑦 ( 𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) | |
| 30 | 14 | nfsbv | ⊢ Ⅎ 𝑦 [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 |
| 31 | 29 30 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) |
| 32 | eleq1w | ⊢ ( 𝑥 = 𝑡 → ( 𝑥 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴 ) ) | |
| 33 | eleq1w | ⊢ ( 𝑦 = 𝑢 → ( 𝑦 ∈ 𝐵 ↔ 𝑢 ∈ 𝐵 ) ) | |
| 34 | 32 33 | bi2anan9 | ⊢ ( ( 𝑥 = 𝑡 ∧ 𝑦 = 𝑢 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ) ) |
| 35 | 19 10 | sylan9bbr | ⊢ ( ( 𝑥 = 𝑡 ∧ 𝑦 = 𝑢 ) → ( 𝜓 ↔ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) ) |
| 36 | 34 35 | anbi12d | ⊢ ( ( 𝑥 = 𝑡 ∧ 𝑦 = 𝑢 ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) ↔ ( ( 𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) ) ) |
| 37 | 25 26 28 31 36 | cbvoprab12 | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } = { 〈 〈 𝑡 , 𝑢 〉 , 𝑧 〉 ∣ ( ( 𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ) } |
| 38 | 24 37 | eqtr4i | ⊢ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } |