This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 20-Dec-2008) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfoprab4f.x | |- F/ x ph |
|
| dfoprab4f.y | |- F/ y ph |
||
| dfoprab4f.1 | |- ( w = <. x , y >. -> ( ph <-> ps ) ) |
||
| Assertion | dfoprab4f | |- { <. w , z >. | ( w e. ( A X. B ) /\ ph ) } = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ps ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfoprab4f.x | |- F/ x ph |
|
| 2 | dfoprab4f.y | |- F/ y ph |
|
| 3 | dfoprab4f.1 | |- ( w = <. x , y >. -> ( ph <-> ps ) ) |
|
| 4 | nfv | |- F/ x w = <. t , u >. |
|
| 5 | nfs1v | |- F/ x [ t / x ] [ u / y ] ps |
|
| 6 | 1 5 | nfbi | |- F/ x ( ph <-> [ t / x ] [ u / y ] ps ) |
| 7 | 4 6 | nfim | |- F/ x ( w = <. t , u >. -> ( ph <-> [ t / x ] [ u / y ] ps ) ) |
| 8 | opeq1 | |- ( x = t -> <. x , u >. = <. t , u >. ) |
|
| 9 | 8 | eqeq2d | |- ( x = t -> ( w = <. x , u >. <-> w = <. t , u >. ) ) |
| 10 | sbequ12 | |- ( x = t -> ( [ u / y ] ps <-> [ t / x ] [ u / y ] ps ) ) |
|
| 11 | 10 | bibi2d | |- ( x = t -> ( ( ph <-> [ u / y ] ps ) <-> ( ph <-> [ t / x ] [ u / y ] ps ) ) ) |
| 12 | 9 11 | imbi12d | |- ( x = t -> ( ( w = <. x , u >. -> ( ph <-> [ u / y ] ps ) ) <-> ( w = <. t , u >. -> ( ph <-> [ t / x ] [ u / y ] ps ) ) ) ) |
| 13 | nfv | |- F/ y w = <. x , u >. |
|
| 14 | nfs1v | |- F/ y [ u / y ] ps |
|
| 15 | 2 14 | nfbi | |- F/ y ( ph <-> [ u / y ] ps ) |
| 16 | 13 15 | nfim | |- F/ y ( w = <. x , u >. -> ( ph <-> [ u / y ] ps ) ) |
| 17 | opeq2 | |- ( y = u -> <. x , y >. = <. x , u >. ) |
|
| 18 | 17 | eqeq2d | |- ( y = u -> ( w = <. x , y >. <-> w = <. x , u >. ) ) |
| 19 | sbequ12 | |- ( y = u -> ( ps <-> [ u / y ] ps ) ) |
|
| 20 | 19 | bibi2d | |- ( y = u -> ( ( ph <-> ps ) <-> ( ph <-> [ u / y ] ps ) ) ) |
| 21 | 18 20 | imbi12d | |- ( y = u -> ( ( w = <. x , y >. -> ( ph <-> ps ) ) <-> ( w = <. x , u >. -> ( ph <-> [ u / y ] ps ) ) ) ) |
| 22 | 16 21 3 | chvarfv | |- ( w = <. x , u >. -> ( ph <-> [ u / y ] ps ) ) |
| 23 | 7 12 22 | chvarfv | |- ( w = <. t , u >. -> ( ph <-> [ t / x ] [ u / y ] ps ) ) |
| 24 | 23 | dfoprab4 | |- { <. w , z >. | ( w e. ( A X. B ) /\ ph ) } = { <. <. t , u >. , z >. | ( ( t e. A /\ u e. B ) /\ [ t / x ] [ u / y ] ps ) } |
| 25 | nfv | |- F/ t ( ( x e. A /\ y e. B ) /\ ps ) |
|
| 26 | nfv | |- F/ u ( ( x e. A /\ y e. B ) /\ ps ) |
|
| 27 | nfv | |- F/ x ( t e. A /\ u e. B ) |
|
| 28 | 27 5 | nfan | |- F/ x ( ( t e. A /\ u e. B ) /\ [ t / x ] [ u / y ] ps ) |
| 29 | nfv | |- F/ y ( t e. A /\ u e. B ) |
|
| 30 | 14 | nfsbv | |- F/ y [ t / x ] [ u / y ] ps |
| 31 | 29 30 | nfan | |- F/ y ( ( t e. A /\ u e. B ) /\ [ t / x ] [ u / y ] ps ) |
| 32 | eleq1w | |- ( x = t -> ( x e. A <-> t e. A ) ) |
|
| 33 | eleq1w | |- ( y = u -> ( y e. B <-> u e. B ) ) |
|
| 34 | 32 33 | bi2anan9 | |- ( ( x = t /\ y = u ) -> ( ( x e. A /\ y e. B ) <-> ( t e. A /\ u e. B ) ) ) |
| 35 | 19 10 | sylan9bbr | |- ( ( x = t /\ y = u ) -> ( ps <-> [ t / x ] [ u / y ] ps ) ) |
| 36 | 34 35 | anbi12d | |- ( ( x = t /\ y = u ) -> ( ( ( x e. A /\ y e. B ) /\ ps ) <-> ( ( t e. A /\ u e. B ) /\ [ t / x ] [ u / y ] ps ) ) ) |
| 37 | 25 26 28 31 36 | cbvoprab12 | |- { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ps ) } = { <. <. t , u >. , z >. | ( ( t e. A /\ u e. B ) /\ [ t / x ] [ u / y ] ps ) } |
| 38 | 24 37 | eqtr4i | |- { <. w , z >. | ( w e. ( A X. B ) /\ ph ) } = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ps ) } |