This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfoprab4.1 | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | dfoprab4 | ⊢ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfoprab4.1 | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | xpss | ⊢ ( 𝐴 × 𝐵 ) ⊆ ( V × V ) | |
| 3 | 2 | sseli | ⊢ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) → 𝑤 ∈ ( V × V ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) → 𝑤 ∈ ( V × V ) ) |
| 5 | 4 | pm4.71ri | ⊢ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ↔ ( 𝑤 ∈ ( V × V ) ∧ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ) ) |
| 6 | 5 | opabbii | ⊢ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) } = { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( V × V ) ∧ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ) } |
| 7 | eleq1 | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) ) | |
| 8 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 9 | 7 8 | bitrdi | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 10 | 9 1 | anbi12d | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) ) ) |
| 11 | 10 | dfoprab3 | ⊢ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( V × V ) ∧ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } |
| 12 | 6 11 | eqtri | ⊢ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) } |