This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quantifier-free definition of On . (Contributed by Scott Fenton, 5-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfon3 | ⊢ On = ( V ∖ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfon2 | ⊢ On = { 𝑥 ∣ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) } | |
| 2 | eqabcb | ⊢ ( { 𝑥 ∣ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) } = ( V ∖ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ) ↔ ∀ 𝑥 ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ↔ 𝑥 ∈ ( V ∖ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ) ) ) | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | 3 | elrn | ⊢ ( 𝑥 ∈ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ↔ ∃ 𝑦 𝑦 ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) 𝑥 ) |
| 5 | brin | ⊢ ( 𝑦 ( SSet ∩ ( Trans × V ) ) 𝑥 ↔ ( 𝑦 SSet 𝑥 ∧ 𝑦 ( Trans × V ) 𝑥 ) ) | |
| 6 | 3 | brsset | ⊢ ( 𝑦 SSet 𝑥 ↔ 𝑦 ⊆ 𝑥 ) |
| 7 | brxp | ⊢ ( 𝑦 ( Trans × V ) 𝑥 ↔ ( 𝑦 ∈ Trans ∧ 𝑥 ∈ V ) ) | |
| 8 | 3 7 | mpbiran2 | ⊢ ( 𝑦 ( Trans × V ) 𝑥 ↔ 𝑦 ∈ Trans ) |
| 9 | vex | ⊢ 𝑦 ∈ V | |
| 10 | 9 | eltrans | ⊢ ( 𝑦 ∈ Trans ↔ Tr 𝑦 ) |
| 11 | 8 10 | bitri | ⊢ ( 𝑦 ( Trans × V ) 𝑥 ↔ Tr 𝑦 ) |
| 12 | 6 11 | anbi12i | ⊢ ( ( 𝑦 SSet 𝑥 ∧ 𝑦 ( Trans × V ) 𝑥 ) ↔ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑦 ) ) |
| 13 | 5 12 | bitri | ⊢ ( 𝑦 ( SSet ∩ ( Trans × V ) ) 𝑥 ↔ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑦 ) ) |
| 14 | ioran | ⊢ ( ¬ ( 𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥 ) ↔ ( ¬ 𝑦 = 𝑥 ∧ ¬ 𝑦 ∈ 𝑥 ) ) | |
| 15 | brun | ⊢ ( 𝑦 ( I ∪ E ) 𝑥 ↔ ( 𝑦 I 𝑥 ∨ 𝑦 E 𝑥 ) ) | |
| 16 | 3 | ideq | ⊢ ( 𝑦 I 𝑥 ↔ 𝑦 = 𝑥 ) |
| 17 | epel | ⊢ ( 𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥 ) | |
| 18 | 16 17 | orbi12i | ⊢ ( ( 𝑦 I 𝑥 ∨ 𝑦 E 𝑥 ) ↔ ( 𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) |
| 19 | 15 18 | bitri | ⊢ ( 𝑦 ( I ∪ E ) 𝑥 ↔ ( 𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥 ) ) |
| 20 | 14 19 | xchnxbir | ⊢ ( ¬ 𝑦 ( I ∪ E ) 𝑥 ↔ ( ¬ 𝑦 = 𝑥 ∧ ¬ 𝑦 ∈ 𝑥 ) ) |
| 21 | 13 20 | anbi12i | ⊢ ( ( 𝑦 ( SSet ∩ ( Trans × V ) ) 𝑥 ∧ ¬ 𝑦 ( I ∪ E ) 𝑥 ) ↔ ( ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑦 ) ∧ ( ¬ 𝑦 = 𝑥 ∧ ¬ 𝑦 ∈ 𝑥 ) ) ) |
| 22 | brdif | ⊢ ( 𝑦 ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) 𝑥 ↔ ( 𝑦 ( SSet ∩ ( Trans × V ) ) 𝑥 ∧ ¬ 𝑦 ( I ∪ E ) 𝑥 ) ) | |
| 23 | dfpss2 | ⊢ ( 𝑦 ⊊ 𝑥 ↔ ( 𝑦 ⊆ 𝑥 ∧ ¬ 𝑦 = 𝑥 ) ) | |
| 24 | 23 | anbi1i | ⊢ ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) ↔ ( ( 𝑦 ⊆ 𝑥 ∧ ¬ 𝑦 = 𝑥 ) ∧ Tr 𝑦 ) ) |
| 25 | an32 | ⊢ ( ( ( 𝑦 ⊆ 𝑥 ∧ ¬ 𝑦 = 𝑥 ) ∧ Tr 𝑦 ) ↔ ( ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑦 ) ∧ ¬ 𝑦 = 𝑥 ) ) | |
| 26 | 24 25 | bitri | ⊢ ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) ↔ ( ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑦 ) ∧ ¬ 𝑦 = 𝑥 ) ) |
| 27 | 26 | anbi1i | ⊢ ( ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) ∧ ¬ 𝑦 ∈ 𝑥 ) ↔ ( ( ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑦 ) ∧ ¬ 𝑦 = 𝑥 ) ∧ ¬ 𝑦 ∈ 𝑥 ) ) |
| 28 | anass | ⊢ ( ( ( ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑦 ) ∧ ¬ 𝑦 = 𝑥 ) ∧ ¬ 𝑦 ∈ 𝑥 ) ↔ ( ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑦 ) ∧ ( ¬ 𝑦 = 𝑥 ∧ ¬ 𝑦 ∈ 𝑥 ) ) ) | |
| 29 | 27 28 | bitri | ⊢ ( ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) ∧ ¬ 𝑦 ∈ 𝑥 ) ↔ ( ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑦 ) ∧ ( ¬ 𝑦 = 𝑥 ∧ ¬ 𝑦 ∈ 𝑥 ) ) ) |
| 30 | 21 22 29 | 3bitr4i | ⊢ ( 𝑦 ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) 𝑥 ↔ ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) ∧ ¬ 𝑦 ∈ 𝑥 ) ) |
| 31 | 30 | exbii | ⊢ ( ∃ 𝑦 𝑦 ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) 𝑥 ↔ ∃ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) ∧ ¬ 𝑦 ∈ 𝑥 ) ) |
| 32 | exanali | ⊢ ( ∃ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) ∧ ¬ 𝑦 ∈ 𝑥 ) ↔ ¬ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) | |
| 33 | 31 32 | bitri | ⊢ ( ∃ 𝑦 𝑦 ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) 𝑥 ↔ ¬ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) |
| 34 | 4 33 | bitri | ⊢ ( 𝑥 ∈ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ↔ ¬ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ) |
| 35 | 34 | con2bii | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ↔ ¬ 𝑥 ∈ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ) |
| 36 | eldif | ⊢ ( 𝑥 ∈ ( V ∖ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ) ) | |
| 37 | 3 36 | mpbiran | ⊢ ( 𝑥 ∈ ( V ∖ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ) ↔ ¬ 𝑥 ∈ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ) |
| 38 | 35 37 | bitr4i | ⊢ ( ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) ↔ 𝑥 ∈ ( V ∖ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ) ) |
| 39 | 2 38 | mpgbir | ⊢ { 𝑥 ∣ ∀ 𝑦 ( ( 𝑦 ⊊ 𝑥 ∧ Tr 𝑦 ) → 𝑦 ∈ 𝑥 ) } = ( V ∖ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ) |
| 40 | 1 39 | eqtri | ⊢ On = ( V ∖ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ) |