This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Another quantifier-free definition of On . (Contributed by Scott Fenton, 4-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfon4 | ⊢ On = ( V ∖ ( ( SSet ∖ ( I ∪ E ) ) “ Trans ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfon3 | ⊢ On = ( V ∖ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ) | |
| 2 | df-ima | ⊢ ( ( SSet ∖ ( I ∪ E ) ) “ Trans ) = ran ( ( SSet ∖ ( I ∪ E ) ) ↾ Trans ) | |
| 3 | df-res | ⊢ ( ( SSet ∖ ( I ∪ E ) ) ↾ Trans ) = ( ( SSet ∖ ( I ∪ E ) ) ∩ ( Trans × V ) ) | |
| 4 | indif1 | ⊢ ( ( SSet ∖ ( I ∪ E ) ) ∩ ( Trans × V ) ) = ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) | |
| 5 | 3 4 | eqtri | ⊢ ( ( SSet ∖ ( I ∪ E ) ) ↾ Trans ) = ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) |
| 6 | 5 | rneqi | ⊢ ran ( ( SSet ∖ ( I ∪ E ) ) ↾ Trans ) = ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) |
| 7 | 2 6 | eqtri | ⊢ ( ( SSet ∖ ( I ∪ E ) ) “ Trans ) = ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) |
| 8 | 7 | difeq2i | ⊢ ( V ∖ ( ( SSet ∖ ( I ∪ E ) ) “ Trans ) ) = ( V ∖ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ) |
| 9 | 1 8 | eqtr4i | ⊢ On = ( V ∖ ( ( SSet ∖ ( I ∪ E ) ) “ Trans ) ) |