This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a class of transitive sets is transitive. Exercise 5(a) of Enderton p. 73. (Contributed by Scott Fenton, 21-Feb-2011) (Proof shortened by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | truni | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | triun | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝑥 ∈ 𝐴 𝑥 ) | |
| 2 | uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
| 3 | treq | ⊢ ( ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 → ( Tr ∪ 𝐴 ↔ Tr ∪ 𝑥 ∈ 𝐴 𝑥 ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( Tr ∪ 𝐴 ↔ Tr ∪ 𝑥 ∈ 𝐴 𝑥 ) |
| 5 | 1 4 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴 ) |