This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfon2 . (Contributed by Scott Fenton, 28-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfon2lem1 | |- Tr U. { x | ( ph /\ Tr x /\ ps ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | truni | |- ( A. y e. { x | ( ph /\ Tr x /\ ps ) } Tr y -> Tr U. { x | ( ph /\ Tr x /\ ps ) } ) |
|
| 2 | nfsbc1v | |- F/ x [. y / x ]. ph |
|
| 3 | nfv | |- F/ x Tr y |
|
| 4 | nfsbc1v | |- F/ x [. y / x ]. ps |
|
| 5 | 2 3 4 | nf3an | |- F/ x ( [. y / x ]. ph /\ Tr y /\ [. y / x ]. ps ) |
| 6 | vex | |- y e. _V |
|
| 7 | sbceq1a | |- ( x = y -> ( ph <-> [. y / x ]. ph ) ) |
|
| 8 | treq | |- ( x = y -> ( Tr x <-> Tr y ) ) |
|
| 9 | sbceq1a | |- ( x = y -> ( ps <-> [. y / x ]. ps ) ) |
|
| 10 | 7 8 9 | 3anbi123d | |- ( x = y -> ( ( ph /\ Tr x /\ ps ) <-> ( [. y / x ]. ph /\ Tr y /\ [. y / x ]. ps ) ) ) |
| 11 | 5 6 10 | elabf | |- ( y e. { x | ( ph /\ Tr x /\ ps ) } <-> ( [. y / x ]. ph /\ Tr y /\ [. y / x ]. ps ) ) |
| 12 | 11 | simp2bi | |- ( y e. { x | ( ph /\ Tr x /\ ps ) } -> Tr y ) |
| 13 | 1 12 | mprg | |- Tr U. { x | ( ph /\ Tr x /\ ps ) } |