This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994) (Revised by Mario Carneiro, 12-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elabf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| elabf.2 | ⊢ 𝐴 ∈ V | ||
| elabf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | elabf | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | elabf.2 | ⊢ 𝐴 ∈ V | |
| 3 | elabf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 5 | 4 1 3 | elabgf | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
| 6 | 2 5 | ax-mp | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |