This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of an isomorphism of a category as a section in both directions. (Contributed by AV, 11-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfiso3.b | |- B = ( Base ` C ) |
|
| dfiso3.h | |- H = ( Hom ` C ) |
||
| dfiso3.i | |- I = ( Iso ` C ) |
||
| dfiso3.s | |- S = ( Sect ` C ) |
||
| dfiso3.c | |- ( ph -> C e. Cat ) |
||
| dfiso3.x | |- ( ph -> X e. B ) |
||
| dfiso3.y | |- ( ph -> Y e. B ) |
||
| dfiso3.f | |- ( ph -> F e. ( X H Y ) ) |
||
| Assertion | dfiso3 | |- ( ph -> ( F e. ( X I Y ) <-> E. g e. ( Y H X ) ( g ( Y S X ) F /\ F ( X S Y ) g ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiso3.b | |- B = ( Base ` C ) |
|
| 2 | dfiso3.h | |- H = ( Hom ` C ) |
|
| 3 | dfiso3.i | |- I = ( Iso ` C ) |
|
| 4 | dfiso3.s | |- S = ( Sect ` C ) |
|
| 5 | dfiso3.c | |- ( ph -> C e. Cat ) |
|
| 6 | dfiso3.x | |- ( ph -> X e. B ) |
|
| 7 | dfiso3.y | |- ( ph -> Y e. B ) |
|
| 8 | dfiso3.f | |- ( ph -> F e. ( X H Y ) ) |
|
| 9 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 10 | eqid | |- ( <. X , Y >. ( comp ` C ) X ) = ( <. X , Y >. ( comp ` C ) X ) |
|
| 11 | eqid | |- ( <. Y , X >. ( comp ` C ) Y ) = ( <. Y , X >. ( comp ` C ) Y ) |
|
| 12 | 1 2 5 3 6 7 8 9 10 11 | dfiso2 | |- ( ph -> ( F e. ( X I Y ) <-> E. g e. ( Y H X ) ( ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) g ) = ( ( Id ` C ) ` Y ) ) ) ) |
| 13 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 14 | 5 | adantr | |- ( ( ph /\ g e. ( Y H X ) ) -> C e. Cat ) |
| 15 | 7 | adantr | |- ( ( ph /\ g e. ( Y H X ) ) -> Y e. B ) |
| 16 | 6 | adantr | |- ( ( ph /\ g e. ( Y H X ) ) -> X e. B ) |
| 17 | simpr | |- ( ( ph /\ g e. ( Y H X ) ) -> g e. ( Y H X ) ) |
|
| 18 | 8 | adantr | |- ( ( ph /\ g e. ( Y H X ) ) -> F e. ( X H Y ) ) |
| 19 | 1 2 13 9 4 14 15 16 17 18 | issect2 | |- ( ( ph /\ g e. ( Y H X ) ) -> ( g ( Y S X ) F <-> ( F ( <. Y , X >. ( comp ` C ) Y ) g ) = ( ( Id ` C ) ` Y ) ) ) |
| 20 | 1 2 13 9 4 14 16 15 18 17 | issect2 | |- ( ( ph /\ g e. ( Y H X ) ) -> ( F ( X S Y ) g <-> ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) |
| 21 | 19 20 | anbi12d | |- ( ( ph /\ g e. ( Y H X ) ) -> ( ( g ( Y S X ) F /\ F ( X S Y ) g ) <-> ( ( F ( <. Y , X >. ( comp ` C ) Y ) g ) = ( ( Id ` C ) ` Y ) /\ ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) ) |
| 22 | ancom | |- ( ( ( F ( <. Y , X >. ( comp ` C ) Y ) g ) = ( ( Id ` C ) ` Y ) /\ ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) g ) = ( ( Id ` C ) ` Y ) ) ) |
|
| 23 | 21 22 | bitr2di | |- ( ( ph /\ g e. ( Y H X ) ) -> ( ( ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) g ) = ( ( Id ` C ) ` Y ) ) <-> ( g ( Y S X ) F /\ F ( X S Y ) g ) ) ) |
| 24 | 23 | rexbidva | |- ( ph -> ( E. g e. ( Y H X ) ( ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) g ) = ( ( Id ` C ) ` Y ) ) <-> E. g e. ( Y H X ) ( g ( Y S X ) F /\ F ( X S Y ) g ) ) ) |
| 25 | 12 24 | bitrd | |- ( ph -> ( F e. ( X I Y ) <-> E. g e. ( Y H X ) ( g ( Y S X ) F /\ F ( X S Y ) g ) ) ) |