This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there are two inverses of a morphism, these inverses are equal. Corollary 3.11 of Adamek p. 28. (Contributed by AV, 10-Apr-2020) (Revised by AV, 3-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inveq.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| inveq.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| inveq.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| inveq.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| inveq.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | inveq | ⊢ ( 𝜑 → ( ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) → 𝐺 = 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inveq.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | inveq.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 3 | inveq.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | inveq.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | inveq.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | eqid | ⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) | |
| 7 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝐶 ∈ Cat ) |
| 8 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝑌 ∈ 𝐵 ) |
| 9 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝑋 ∈ 𝐵 ) |
| 10 | 1 2 3 4 5 6 | isinv | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) ) |
| 11 | simpr | ⊢ ( ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) → 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) | |
| 12 | 10 11 | biimtrdi | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) |
| 13 | 12 | com12 | ⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → ( 𝜑 → 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) → ( 𝜑 → 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) |
| 15 | 14 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) |
| 16 | 1 2 3 4 5 6 | isinv | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ↔ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾 ∧ 𝐾 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) ) |
| 17 | simpl | ⊢ ( ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾 ∧ 𝐾 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) → 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾 ) | |
| 18 | 16 17 | biimtrdi | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 → 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾 ) ) |
| 19 | 18 | adantld | ⊢ ( 𝜑 → ( ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) → 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾 ) ) |
| 20 | 19 | imp | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐾 ) |
| 21 | 1 6 7 8 9 15 20 | sectcan | ⊢ ( ( 𝜑 ∧ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) ) → 𝐺 = 𝐾 ) |
| 22 | 21 | ex | ⊢ ( 𝜑 → ( ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ∧ 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐾 ) → 𝐺 = 𝐾 ) ) |