This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the conditional operator df-if . Note that ph is independent of x i.e. a constant true or false. (Contributed by NM, 25-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfif3.1 | ⊢ 𝐶 = { 𝑥 ∣ 𝜑 } | |
| Assertion | dfif4 | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfif3.1 | ⊢ 𝐶 = { 𝑥 ∣ 𝜑 } | |
| 2 | 1 | dfif3 | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) |
| 3 | undir | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ∩ ( 𝐶 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ) | |
| 4 | undi | ⊢ ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) | |
| 5 | undi | ⊢ ( 𝐶 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐶 ∪ 𝐵 ) ∩ ( 𝐶 ∪ ( V ∖ 𝐶 ) ) ) | |
| 6 | uncom | ⊢ ( 𝐶 ∪ 𝐵 ) = ( 𝐵 ∪ 𝐶 ) | |
| 7 | unvdif | ⊢ ( 𝐶 ∪ ( V ∖ 𝐶 ) ) = V | |
| 8 | 6 7 | ineq12i | ⊢ ( ( 𝐶 ∪ 𝐵 ) ∩ ( 𝐶 ∪ ( V ∖ 𝐶 ) ) ) = ( ( 𝐵 ∪ 𝐶 ) ∩ V ) |
| 9 | inv1 | ⊢ ( ( 𝐵 ∪ 𝐶 ) ∩ V ) = ( 𝐵 ∪ 𝐶 ) | |
| 10 | 5 8 9 | 3eqtri | ⊢ ( 𝐶 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( 𝐵 ∪ 𝐶 ) |
| 11 | 4 10 | ineq12i | ⊢ ( ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ∩ ( 𝐶 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ) = ( ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) |
| 12 | inass | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) | |
| 13 | 11 12 | eqtri | ⊢ ( ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ∩ ( 𝐶 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) |
| 14 | 2 3 13 | 3eqtri | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) |