This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for union over intersection. Exercise 11 of TakeutiZaring p. 17. (Contributed by NM, 30-Sep-2002) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | undi | ⊢ ( 𝐴 ∪ ( 𝐵 ∩ 𝐶 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) | |
| 2 | 1 | orbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 3 | ordi | ⊢ ( ( 𝑥 ∈ 𝐴 ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶 ) ) ) | |
| 4 | elin | ⊢ ( 𝑥 ∈ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ 𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ) ) | |
| 5 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) | |
| 6 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶 ) ) | |
| 7 | 5 6 | anbi12i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶 ) ) ) |
| 8 | 4 7 | bitr2i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶 ) ) ↔ 𝑥 ∈ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ 𝐶 ) ) ) |
| 9 | 2 3 8 | 3bitri | ⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) ↔ 𝑥 ∈ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ 𝐶 ) ) ) |
| 10 | 9 | uneqri | ⊢ ( 𝐴 ∪ ( 𝐵 ∩ 𝐶 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ 𝐶 ) ) |