This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the conditional operator df-if . Note that ph is independent of x i.e. a constant true or false. (Contributed by NM, 25-Aug-2013) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfif3.1 | ⊢ 𝐶 = { 𝑥 ∣ 𝜑 } | |
| Assertion | dfif3 | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfif3.1 | ⊢ 𝐶 = { 𝑥 ∣ 𝜑 } | |
| 2 | dfif6 | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( { 𝑦 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑦 ∈ 𝐵 ∣ ¬ 𝜑 } ) | |
| 3 | biidd | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜑 ) ) | |
| 4 | 3 | cbvabv | ⊢ { 𝑥 ∣ 𝜑 } = { 𝑦 ∣ 𝜑 } |
| 5 | 1 4 | eqtri | ⊢ 𝐶 = { 𝑦 ∣ 𝜑 } |
| 6 | 5 | ineq2i | ⊢ ( 𝐴 ∩ 𝐶 ) = ( 𝐴 ∩ { 𝑦 ∣ 𝜑 } ) |
| 7 | dfrab3 | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝜑 } = ( 𝐴 ∩ { 𝑦 ∣ 𝜑 } ) | |
| 8 | 6 7 | eqtr4i | ⊢ ( 𝐴 ∩ 𝐶 ) = { 𝑦 ∈ 𝐴 ∣ 𝜑 } |
| 9 | dfrab3 | ⊢ { 𝑦 ∈ 𝐵 ∣ ¬ 𝜑 } = ( 𝐵 ∩ { 𝑦 ∣ ¬ 𝜑 } ) | |
| 10 | biidd | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜑 ) ) | |
| 11 | 10 | notabw | ⊢ { 𝑦 ∣ ¬ 𝜑 } = ( V ∖ { 𝑧 ∣ 𝜑 } ) |
| 12 | biidd | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜑 ) ) | |
| 13 | 12 | cbvabv | ⊢ { 𝑥 ∣ 𝜑 } = { 𝑧 ∣ 𝜑 } |
| 14 | 1 13 | eqtri | ⊢ 𝐶 = { 𝑧 ∣ 𝜑 } |
| 15 | 14 | difeq2i | ⊢ ( V ∖ 𝐶 ) = ( V ∖ { 𝑧 ∣ 𝜑 } ) |
| 16 | 11 15 | eqtr4i | ⊢ { 𝑦 ∣ ¬ 𝜑 } = ( V ∖ 𝐶 ) |
| 17 | 16 | ineq2i | ⊢ ( 𝐵 ∩ { 𝑦 ∣ ¬ 𝜑 } ) = ( 𝐵 ∩ ( V ∖ 𝐶 ) ) |
| 18 | 9 17 | eqtr2i | ⊢ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) = { 𝑦 ∈ 𝐵 ∣ ¬ 𝜑 } |
| 19 | 8 18 | uneq12i | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( { 𝑦 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑦 ∈ 𝐵 ∣ ¬ 𝜑 } ) |
| 20 | 2 19 | eqtr4i | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) |