This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the conditional operator df-if . Note that ph is independent of x i.e. a constant true or false (see also ab0orv ). (Contributed by Gérard Lang, 18-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfif3.1 | ⊢ 𝐶 = { 𝑥 ∣ 𝜑 } | |
| Assertion | dfif5 | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfif3.1 | ⊢ 𝐶 = { 𝑥 ∣ 𝜑 } | |
| 2 | inindi | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) = ( ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) ∩ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) | |
| 3 | 1 | dfif4 | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) |
| 4 | undir | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) = ( ( 𝐴 ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) ∩ ( 𝐵 ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) ) | |
| 5 | unidm | ⊢ ( 𝐴 ∪ 𝐴 ) = 𝐴 | |
| 6 | 5 | uneq1i | ⊢ ( ( 𝐴 ∪ 𝐴 ) ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) |
| 7 | unass | ⊢ ( ( 𝐴 ∪ 𝐴 ) ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∪ ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ) | |
| 8 | undi | ⊢ ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) | |
| 9 | 6 7 8 | 3eqtr3ri | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∪ ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ) |
| 10 | undi | ⊢ ( 𝐴 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) = ( ( 𝐴 ∪ ( 𝐴 ∖ 𝐵 ) ) ∩ ( 𝐴 ∪ 𝐶 ) ) | |
| 11 | undifabs | ⊢ ( 𝐴 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 | |
| 12 | 11 | ineq1i | ⊢ ( ( 𝐴 ∪ ( 𝐴 ∖ 𝐵 ) ) ∩ ( 𝐴 ∪ 𝐶 ) ) = ( 𝐴 ∩ ( 𝐴 ∪ 𝐶 ) ) |
| 13 | inabs | ⊢ ( 𝐴 ∩ ( 𝐴 ∪ 𝐶 ) ) = 𝐴 | |
| 14 | 10 12 13 | 3eqtri | ⊢ ( 𝐴 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) = 𝐴 |
| 15 | undif2 | ⊢ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐵 ) | |
| 16 | 15 | ineq1i | ⊢ ( ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) |
| 17 | undi | ⊢ ( 𝐴 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) | |
| 18 | 16 17 8 | 3eqtr4i | ⊢ ( 𝐴 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) |
| 19 | 14 18 | uneq12i | ⊢ ( ( 𝐴 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) ∪ ( 𝐴 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) = ( 𝐴 ∪ ( 𝐴 ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) ) |
| 20 | 9 19 | eqtr4i | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) ∪ ( 𝐴 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) |
| 21 | unundi | ⊢ ( 𝐴 ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) = ( ( 𝐴 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) ∪ ( 𝐴 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) | |
| 22 | 20 21 | eqtr4i | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) |
| 23 | unass | ⊢ ( ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) ∪ 𝐵 ) = ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐵 ∪ 𝐵 ) ) | |
| 24 | undi | ⊢ ( 𝐵 ∪ ( 𝐴 ∩ 𝐶 ) ) = ( ( 𝐵 ∪ 𝐴 ) ∩ ( 𝐵 ∪ 𝐶 ) ) | |
| 25 | uncom | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) = ( 𝐵 ∪ ( 𝐴 ∩ 𝐶 ) ) | |
| 26 | undif2 | ⊢ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐵 ∪ 𝐴 ) | |
| 27 | 26 | ineq1i | ⊢ ( ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐵 ∪ 𝐴 ) ∩ ( 𝐵 ∪ 𝐶 ) ) |
| 28 | 24 25 27 | 3eqtr4i | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) = ( ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) |
| 29 | undi | ⊢ ( 𝐵 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) = ( ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ∩ ( 𝐵 ∪ 𝐶 ) ) | |
| 30 | 28 29 | eqtr4i | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) = ( 𝐵 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) |
| 31 | undi | ⊢ ( 𝐵 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐵 ∪ ( 𝐵 ∖ 𝐴 ) ) ∩ ( 𝐵 ∪ ( V ∖ 𝐶 ) ) ) | |
| 32 | undifabs | ⊢ ( 𝐵 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 | |
| 33 | 32 | ineq1i | ⊢ ( ( 𝐵 ∪ ( 𝐵 ∖ 𝐴 ) ) ∩ ( 𝐵 ∪ ( V ∖ 𝐶 ) ) ) = ( 𝐵 ∩ ( 𝐵 ∪ ( V ∖ 𝐶 ) ) ) |
| 34 | inabs | ⊢ ( 𝐵 ∩ ( 𝐵 ∪ ( V ∖ 𝐶 ) ) ) = 𝐵 | |
| 35 | 31 33 34 | 3eqtrri | ⊢ 𝐵 = ( 𝐵 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) |
| 36 | 30 35 | uneq12i | ⊢ ( ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) ∪ 𝐵 ) = ( ( 𝐵 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) ∪ ( 𝐵 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) |
| 37 | unidm | ⊢ ( 𝐵 ∪ 𝐵 ) = 𝐵 | |
| 38 | 37 | uneq2i | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐵 ∪ 𝐵 ) ) = ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) |
| 39 | 23 36 38 | 3eqtr3ri | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) = ( ( 𝐵 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) ∪ ( 𝐵 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) |
| 40 | uncom | ⊢ ( 𝐵 ∪ 𝐶 ) = ( 𝐶 ∪ 𝐵 ) | |
| 41 | 40 | ineq2i | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐶 ∪ 𝐵 ) ) |
| 42 | undir | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐶 ∪ 𝐵 ) ) | |
| 43 | 41 42 | eqtr4i | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐶 ) ∪ 𝐵 ) |
| 44 | unundi | ⊢ ( 𝐵 ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) = ( ( 𝐵 ∪ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) ∪ ( 𝐵 ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) | |
| 45 | 39 43 44 | 3eqtr4i | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐵 ∪ 𝐶 ) ) = ( 𝐵 ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) |
| 46 | 22 45 | ineq12i | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) ∩ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) = ( ( 𝐴 ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) ∩ ( 𝐵 ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) ) |
| 47 | 4 46 | eqtr4i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) = ( ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐴 ∪ ( V ∖ 𝐶 ) ) ) ∩ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝐵 ∪ 𝐶 ) ) ) |
| 48 | 2 3 47 | 3eqtr4i | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( ( 𝐴 ∩ 𝐵 ) ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ∪ ( ( 𝐵 ∖ 𝐴 ) ∩ ( V ∖ 𝐶 ) ) ) ) |