This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the conditional operator df-if . Note that ph is independent of x i.e. a constant true or false. (Contributed by NM, 25-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfif3.1 | |- C = { x | ph } |
|
| Assertion | dfif4 | |- if ( ph , A , B ) = ( ( A u. B ) i^i ( ( A u. ( _V \ C ) ) i^i ( B u. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfif3.1 | |- C = { x | ph } |
|
| 2 | 1 | dfif3 | |- if ( ph , A , B ) = ( ( A i^i C ) u. ( B i^i ( _V \ C ) ) ) |
| 3 | undir | |- ( ( A i^i C ) u. ( B i^i ( _V \ C ) ) ) = ( ( A u. ( B i^i ( _V \ C ) ) ) i^i ( C u. ( B i^i ( _V \ C ) ) ) ) |
|
| 4 | undi | |- ( A u. ( B i^i ( _V \ C ) ) ) = ( ( A u. B ) i^i ( A u. ( _V \ C ) ) ) |
|
| 5 | undi | |- ( C u. ( B i^i ( _V \ C ) ) ) = ( ( C u. B ) i^i ( C u. ( _V \ C ) ) ) |
|
| 6 | uncom | |- ( C u. B ) = ( B u. C ) |
|
| 7 | unvdif | |- ( C u. ( _V \ C ) ) = _V |
|
| 8 | 6 7 | ineq12i | |- ( ( C u. B ) i^i ( C u. ( _V \ C ) ) ) = ( ( B u. C ) i^i _V ) |
| 9 | inv1 | |- ( ( B u. C ) i^i _V ) = ( B u. C ) |
|
| 10 | 5 8 9 | 3eqtri | |- ( C u. ( B i^i ( _V \ C ) ) ) = ( B u. C ) |
| 11 | 4 10 | ineq12i | |- ( ( A u. ( B i^i ( _V \ C ) ) ) i^i ( C u. ( B i^i ( _V \ C ) ) ) ) = ( ( ( A u. B ) i^i ( A u. ( _V \ C ) ) ) i^i ( B u. C ) ) |
| 12 | inass | |- ( ( ( A u. B ) i^i ( A u. ( _V \ C ) ) ) i^i ( B u. C ) ) = ( ( A u. B ) i^i ( ( A u. ( _V \ C ) ) i^i ( B u. C ) ) ) |
|
| 13 | 11 12 | eqtri | |- ( ( A u. ( B i^i ( _V \ C ) ) ) i^i ( C u. ( B i^i ( _V \ C ) ) ) ) = ( ( A u. B ) i^i ( ( A u. ( _V \ C ) ) i^i ( B u. C ) ) ) |
| 14 | 2 3 13 | 3eqtri | |- if ( ph , A , B ) = ( ( A u. B ) i^i ( ( A u. ( _V \ C ) ) i^i ( B u. C ) ) ) |