This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr for the main application. (Contributed by NM, 27-Dec-1996) (Proof shortened by Andrew Salmon, 27-Aug-2011) Generalized from its special instance cotr . (Revised by Richard Penner, 24-Dec-2019) (Proof shortened by SN, 19-Dec-2024) Avoid ax-11 . (Revised by BTernaryTau, 29-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cotrg | ⊢ ( ( 𝐴 ∘ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | ⊢ Rel ( 𝐴 ∘ 𝐵 ) | |
| 2 | ssrel3 | ⊢ ( Rel ( 𝐴 ∘ 𝐵 ) → ( ( 𝐴 ∘ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ∀ 𝑧 ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑧 → 𝑥 𝐶 𝑧 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ( 𝐴 ∘ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ∀ 𝑧 ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑧 → 𝑥 𝐶 𝑧 ) ) |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | vex | ⊢ 𝑧 ∈ V | |
| 6 | 4 5 | brco | ⊢ ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑧 ↔ ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
| 7 | 6 | imbi1i | ⊢ ( ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑧 → 𝑥 𝐶 𝑧 ) ↔ ( ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 8 | 19.23v | ⊢ ( ∀ 𝑦 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ( ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑧 → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑦 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 10 | 9 | albii | ⊢ ( ∀ 𝑧 ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑧 → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 11 | breq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝑦 𝐴 𝑧 ↔ 𝑦 𝐴 𝑤 ) ) | |
| 12 | 11 | anbi2d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ↔ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑤 ) ) ) |
| 13 | breq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝑥 𝐶 𝑧 ↔ 𝑥 𝐶 𝑤 ) ) | |
| 14 | 12 13 | imbi12d | ⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑤 ) → 𝑥 𝐶 𝑤 ) ) ) |
| 15 | breq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑥 𝐵 𝑦 ↔ 𝑥 𝐵 𝑤 ) ) | |
| 16 | breq1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 𝐴 𝑧 ↔ 𝑤 𝐴 𝑧 ) ) | |
| 17 | 15 16 | anbi12d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ↔ ( 𝑥 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ) ) |
| 18 | 17 | imbi1d | ⊢ ( 𝑦 = 𝑤 → ( ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ( ( 𝑥 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) |
| 19 | 14 18 | alcomw | ⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 20 | 10 19 | bitri | ⊢ ( ∀ 𝑧 ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑧 → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 21 | 20 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑧 ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑧 → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 22 | 3 21 | bitri | ⊢ ( ( 𝐴 ∘ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |