This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An onto mapping expressed in terms of function values. As dffo3 but with less disjoint vars constraints. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dffo3f.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| Assertion | dffo3f | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo3f.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| 2 | dffo2 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) ) | |
| 3 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 4 | fnrnfv | ⊢ ( 𝐹 Fn 𝐴 → ran 𝐹 = { 𝑦 ∣ ∃ 𝑤 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑤 ) } ) | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 𝑤 | |
| 6 | 1 5 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑤 ) |
| 7 | 6 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦 = ( 𝐹 ‘ 𝑤 ) |
| 8 | nfv | ⊢ Ⅎ 𝑤 𝑦 = ( 𝐹 ‘ 𝑥 ) | |
| 9 | fveq2 | ⊢ ( 𝑤 = 𝑥 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 10 | 9 | eqeq2d | ⊢ ( 𝑤 = 𝑥 → ( 𝑦 = ( 𝐹 ‘ 𝑤 ) ↔ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 11 | 7 8 10 | cbvrexw | ⊢ ( ∃ 𝑤 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑤 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
| 12 | 11 | abbii | ⊢ { 𝑦 ∣ ∃ 𝑤 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑤 ) } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } |
| 13 | 4 12 | eqtrdi | ⊢ ( 𝐹 Fn 𝐴 → ran 𝐹 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } ) |
| 14 | 13 | eqeq1d | ⊢ ( 𝐹 Fn 𝐴 → ( ran 𝐹 = 𝐵 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } = 𝐵 ) ) |
| 15 | 3 14 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ran 𝐹 = 𝐵 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } = 𝐵 ) ) |
| 16 | dfbi2 | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ 𝐵 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 17 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 18 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 19 | 1 17 18 | nff | ⊢ Ⅎ 𝑥 𝐹 : 𝐴 ⟶ 𝐵 |
| 20 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 | |
| 21 | simpr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) | |
| 22 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) | |
| 23 | 22 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 24 | 21 23 | eqeltrd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑦 ∈ 𝐵 ) |
| 25 | 24 | exp31 | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) ) |
| 26 | 19 20 25 | rexlimd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) |
| 27 | 26 | biantrurd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 28 | 16 27 | bitr4id | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 29 | 28 | albidv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 30 | eqabcb | ⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } = 𝐵 ↔ ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ 𝐵 ) ) | |
| 31 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) | |
| 32 | 29 30 31 | 3bitr4g | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } = 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 33 | 15 32 | bitrd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ran 𝐹 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 34 | 33 | pm5.32i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 35 | 2 34 | bitri | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |