This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An onto mapping expressed in terms of function values. As dffo3 but with less disjoint vars constraints. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dffo3f.1 | |- F/_ x F |
|
| Assertion | dffo3f | |- ( F : A -onto-> B <-> ( F : A --> B /\ A. y e. B E. x e. A y = ( F ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo3f.1 | |- F/_ x F |
|
| 2 | dffo2 | |- ( F : A -onto-> B <-> ( F : A --> B /\ ran F = B ) ) |
|
| 3 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 4 | fnrnfv | |- ( F Fn A -> ran F = { y | E. w e. A y = ( F ` w ) } ) |
|
| 5 | nfcv | |- F/_ x w |
|
| 6 | 1 5 | nffv | |- F/_ x ( F ` w ) |
| 7 | 6 | nfeq2 | |- F/ x y = ( F ` w ) |
| 8 | nfv | |- F/ w y = ( F ` x ) |
|
| 9 | fveq2 | |- ( w = x -> ( F ` w ) = ( F ` x ) ) |
|
| 10 | 9 | eqeq2d | |- ( w = x -> ( y = ( F ` w ) <-> y = ( F ` x ) ) ) |
| 11 | 7 8 10 | cbvrexw | |- ( E. w e. A y = ( F ` w ) <-> E. x e. A y = ( F ` x ) ) |
| 12 | 11 | abbii | |- { y | E. w e. A y = ( F ` w ) } = { y | E. x e. A y = ( F ` x ) } |
| 13 | 4 12 | eqtrdi | |- ( F Fn A -> ran F = { y | E. x e. A y = ( F ` x ) } ) |
| 14 | 13 | eqeq1d | |- ( F Fn A -> ( ran F = B <-> { y | E. x e. A y = ( F ` x ) } = B ) ) |
| 15 | 3 14 | syl | |- ( F : A --> B -> ( ran F = B <-> { y | E. x e. A y = ( F ` x ) } = B ) ) |
| 16 | dfbi2 | |- ( ( E. x e. A y = ( F ` x ) <-> y e. B ) <-> ( ( E. x e. A y = ( F ` x ) -> y e. B ) /\ ( y e. B -> E. x e. A y = ( F ` x ) ) ) ) |
|
| 17 | nfcv | |- F/_ x A |
|
| 18 | nfcv | |- F/_ x B |
|
| 19 | 1 17 18 | nff | |- F/ x F : A --> B |
| 20 | nfv | |- F/ x y e. B |
|
| 21 | simpr | |- ( ( ( F : A --> B /\ x e. A ) /\ y = ( F ` x ) ) -> y = ( F ` x ) ) |
|
| 22 | ffvelcdm | |- ( ( F : A --> B /\ x e. A ) -> ( F ` x ) e. B ) |
|
| 23 | 22 | adantr | |- ( ( ( F : A --> B /\ x e. A ) /\ y = ( F ` x ) ) -> ( F ` x ) e. B ) |
| 24 | 21 23 | eqeltrd | |- ( ( ( F : A --> B /\ x e. A ) /\ y = ( F ` x ) ) -> y e. B ) |
| 25 | 24 | exp31 | |- ( F : A --> B -> ( x e. A -> ( y = ( F ` x ) -> y e. B ) ) ) |
| 26 | 19 20 25 | rexlimd | |- ( F : A --> B -> ( E. x e. A y = ( F ` x ) -> y e. B ) ) |
| 27 | 26 | biantrurd | |- ( F : A --> B -> ( ( y e. B -> E. x e. A y = ( F ` x ) ) <-> ( ( E. x e. A y = ( F ` x ) -> y e. B ) /\ ( y e. B -> E. x e. A y = ( F ` x ) ) ) ) ) |
| 28 | 16 27 | bitr4id | |- ( F : A --> B -> ( ( E. x e. A y = ( F ` x ) <-> y e. B ) <-> ( y e. B -> E. x e. A y = ( F ` x ) ) ) ) |
| 29 | 28 | albidv | |- ( F : A --> B -> ( A. y ( E. x e. A y = ( F ` x ) <-> y e. B ) <-> A. y ( y e. B -> E. x e. A y = ( F ` x ) ) ) ) |
| 30 | eqabcb | |- ( { y | E. x e. A y = ( F ` x ) } = B <-> A. y ( E. x e. A y = ( F ` x ) <-> y e. B ) ) |
|
| 31 | df-ral | |- ( A. y e. B E. x e. A y = ( F ` x ) <-> A. y ( y e. B -> E. x e. A y = ( F ` x ) ) ) |
|
| 32 | 29 30 31 | 3bitr4g | |- ( F : A --> B -> ( { y | E. x e. A y = ( F ` x ) } = B <-> A. y e. B E. x e. A y = ( F ` x ) ) ) |
| 33 | 15 32 | bitrd | |- ( F : A --> B -> ( ran F = B <-> A. y e. B E. x e. A y = ( F ` x ) ) ) |
| 34 | 33 | pm5.32i | |- ( ( F : A --> B /\ ran F = B ) <-> ( F : A --> B /\ A. y e. B E. x e. A y = ( F ` x ) ) ) |
| 35 | 2 34 | bitri | |- ( F : A -onto-> B <-> ( F : A --> B /\ A. y e. B E. x e. A y = ( F ` x ) ) ) |