This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac12 . (Contributed by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfac12.1 | |- ( ph -> A e. On ) |
|
| dfac12.3 | |- ( ph -> F : ~P ( har ` ( R1 ` A ) ) -1-1-> On ) |
||
| dfac12.4 | |- G = recs ( ( x e. _V |-> ( y e. ( R1 ` dom x ) |-> if ( dom x = U. dom x , ( ( suc U. ran U. ran x .o ( rank ` y ) ) +o ( ( x ` suc ( rank ` y ) ) ` y ) ) , ( F ` ( ( `' OrdIso ( _E , ran ( x ` U. dom x ) ) o. ( x ` U. dom x ) ) " y ) ) ) ) ) ) |
||
| Assertion | dfac12lem3 | |- ( ph -> ( R1 ` A ) e. dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac12.1 | |- ( ph -> A e. On ) |
|
| 2 | dfac12.3 | |- ( ph -> F : ~P ( har ` ( R1 ` A ) ) -1-1-> On ) |
|
| 3 | dfac12.4 | |- G = recs ( ( x e. _V |-> ( y e. ( R1 ` dom x ) |-> if ( dom x = U. dom x , ( ( suc U. ran U. ran x .o ( rank ` y ) ) +o ( ( x ` suc ( rank ` y ) ) ` y ) ) , ( F ` ( ( `' OrdIso ( _E , ran ( x ` U. dom x ) ) o. ( x ` U. dom x ) ) " y ) ) ) ) ) ) |
|
| 4 | fvex | |- ( G ` A ) e. _V |
|
| 5 | 4 | rnex | |- ran ( G ` A ) e. _V |
| 6 | ssid | |- A C_ A |
|
| 7 | sseq1 | |- ( m = n -> ( m C_ A <-> n C_ A ) ) |
|
| 8 | fveq2 | |- ( m = n -> ( G ` m ) = ( G ` n ) ) |
|
| 9 | f1eq1 | |- ( ( G ` m ) = ( G ` n ) -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` n ) : ( R1 ` m ) -1-1-> On ) ) |
|
| 10 | 8 9 | syl | |- ( m = n -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` n ) : ( R1 ` m ) -1-1-> On ) ) |
| 11 | fveq2 | |- ( m = n -> ( R1 ` m ) = ( R1 ` n ) ) |
|
| 12 | f1eq2 | |- ( ( R1 ` m ) = ( R1 ` n ) -> ( ( G ` n ) : ( R1 ` m ) -1-1-> On <-> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) |
|
| 13 | 11 12 | syl | |- ( m = n -> ( ( G ` n ) : ( R1 ` m ) -1-1-> On <-> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) |
| 14 | 10 13 | bitrd | |- ( m = n -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) |
| 15 | 7 14 | imbi12d | |- ( m = n -> ( ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) <-> ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) ) |
| 16 | 15 | imbi2d | |- ( m = n -> ( ( ph -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) <-> ( ph -> ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) ) ) |
| 17 | sseq1 | |- ( m = A -> ( m C_ A <-> A C_ A ) ) |
|
| 18 | fveq2 | |- ( m = A -> ( G ` m ) = ( G ` A ) ) |
|
| 19 | f1eq1 | |- ( ( G ` m ) = ( G ` A ) -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` A ) : ( R1 ` m ) -1-1-> On ) ) |
|
| 20 | 18 19 | syl | |- ( m = A -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` A ) : ( R1 ` m ) -1-1-> On ) ) |
| 21 | fveq2 | |- ( m = A -> ( R1 ` m ) = ( R1 ` A ) ) |
|
| 22 | f1eq2 | |- ( ( R1 ` m ) = ( R1 ` A ) -> ( ( G ` A ) : ( R1 ` m ) -1-1-> On <-> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) |
|
| 23 | 21 22 | syl | |- ( m = A -> ( ( G ` A ) : ( R1 ` m ) -1-1-> On <-> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) |
| 24 | 20 23 | bitrd | |- ( m = A -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) |
| 25 | 17 24 | imbi12d | |- ( m = A -> ( ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) <-> ( A C_ A -> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) ) |
| 26 | 25 | imbi2d | |- ( m = A -> ( ( ph -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) <-> ( ph -> ( A C_ A -> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) ) ) |
| 27 | r19.21v | |- ( A. n e. m ( ph -> ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) <-> ( ph -> A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) ) |
|
| 28 | eloni | |- ( m e. On -> Ord m ) |
|
| 29 | 28 | ad2antrl | |- ( ( ph /\ ( m e. On /\ m C_ A ) ) -> Ord m ) |
| 30 | ordelss | |- ( ( Ord m /\ n e. m ) -> n C_ m ) |
|
| 31 | 29 30 | sylan | |- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ n e. m ) -> n C_ m ) |
| 32 | simplrr | |- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ n e. m ) -> m C_ A ) |
|
| 33 | 31 32 | sstrd | |- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ n e. m ) -> n C_ A ) |
| 34 | pm5.5 | |- ( n C_ A -> ( ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) <-> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) |
|
| 35 | 33 34 | syl | |- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ n e. m ) -> ( ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) <-> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) |
| 36 | 35 | ralbidva | |- ( ( ph /\ ( m e. On /\ m C_ A ) ) -> ( A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) <-> A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) |
| 37 | 1 | ad2antrr | |- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> A e. On ) |
| 38 | 2 | ad2antrr | |- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> F : ~P ( har ` ( R1 ` A ) ) -1-1-> On ) |
| 39 | simplrl | |- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> m e. On ) |
|
| 40 | eqid | |- ( `' OrdIso ( _E , ran ( G ` U. m ) ) o. ( G ` U. m ) ) = ( `' OrdIso ( _E , ran ( G ` U. m ) ) o. ( G ` U. m ) ) |
|
| 41 | simplrr | |- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> m C_ A ) |
|
| 42 | simpr | |- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) |
|
| 43 | fveq2 | |- ( n = z -> ( G ` n ) = ( G ` z ) ) |
|
| 44 | f1eq1 | |- ( ( G ` n ) = ( G ` z ) -> ( ( G ` n ) : ( R1 ` n ) -1-1-> On <-> ( G ` z ) : ( R1 ` n ) -1-1-> On ) ) |
|
| 45 | 43 44 | syl | |- ( n = z -> ( ( G ` n ) : ( R1 ` n ) -1-1-> On <-> ( G ` z ) : ( R1 ` n ) -1-1-> On ) ) |
| 46 | fveq2 | |- ( n = z -> ( R1 ` n ) = ( R1 ` z ) ) |
|
| 47 | f1eq2 | |- ( ( R1 ` n ) = ( R1 ` z ) -> ( ( G ` z ) : ( R1 ` n ) -1-1-> On <-> ( G ` z ) : ( R1 ` z ) -1-1-> On ) ) |
|
| 48 | 46 47 | syl | |- ( n = z -> ( ( G ` z ) : ( R1 ` n ) -1-1-> On <-> ( G ` z ) : ( R1 ` z ) -1-1-> On ) ) |
| 49 | 45 48 | bitrd | |- ( n = z -> ( ( G ` n ) : ( R1 ` n ) -1-1-> On <-> ( G ` z ) : ( R1 ` z ) -1-1-> On ) ) |
| 50 | 49 | cbvralvw | |- ( A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On <-> A. z e. m ( G ` z ) : ( R1 ` z ) -1-1-> On ) |
| 51 | 42 50 | sylib | |- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> A. z e. m ( G ` z ) : ( R1 ` z ) -1-1-> On ) |
| 52 | 37 38 3 39 40 41 51 | dfac12lem2 | |- ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) |
| 53 | 52 | ex | |- ( ( ph /\ ( m e. On /\ m C_ A ) ) -> ( A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) |
| 54 | 36 53 | sylbid | |- ( ( ph /\ ( m e. On /\ m C_ A ) ) -> ( A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) |
| 55 | 54 | expr | |- ( ( ph /\ m e. On ) -> ( m C_ A -> ( A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) ) |
| 56 | 55 | com23 | |- ( ( ph /\ m e. On ) -> ( A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) ) |
| 57 | 56 | expcom | |- ( m e. On -> ( ph -> ( A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) ) ) |
| 58 | 57 | a2d | |- ( m e. On -> ( ( ph -> A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) -> ( ph -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) ) ) |
| 59 | 27 58 | biimtrid | |- ( m e. On -> ( A. n e. m ( ph -> ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) -> ( ph -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) ) ) |
| 60 | 16 26 59 | tfis3 | |- ( A e. On -> ( ph -> ( A C_ A -> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) ) |
| 61 | 1 60 | mpcom | |- ( ph -> ( A C_ A -> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) |
| 62 | 6 61 | mpi | |- ( ph -> ( G ` A ) : ( R1 ` A ) -1-1-> On ) |
| 63 | f1f | |- ( ( G ` A ) : ( R1 ` A ) -1-1-> On -> ( G ` A ) : ( R1 ` A ) --> On ) |
|
| 64 | frn | |- ( ( G ` A ) : ( R1 ` A ) --> On -> ran ( G ` A ) C_ On ) |
|
| 65 | 62 63 64 | 3syl | |- ( ph -> ran ( G ` A ) C_ On ) |
| 66 | onssnum | |- ( ( ran ( G ` A ) e. _V /\ ran ( G ` A ) C_ On ) -> ran ( G ` A ) e. dom card ) |
|
| 67 | 5 65 66 | sylancr | |- ( ph -> ran ( G ` A ) e. dom card ) |
| 68 | f1f1orn | |- ( ( G ` A ) : ( R1 ` A ) -1-1-> On -> ( G ` A ) : ( R1 ` A ) -1-1-onto-> ran ( G ` A ) ) |
|
| 69 | 62 68 | syl | |- ( ph -> ( G ` A ) : ( R1 ` A ) -1-1-onto-> ran ( G ` A ) ) |
| 70 | fvex | |- ( R1 ` A ) e. _V |
|
| 71 | 70 | f1oen | |- ( ( G ` A ) : ( R1 ` A ) -1-1-onto-> ran ( G ` A ) -> ( R1 ` A ) ~~ ran ( G ` A ) ) |
| 72 | ennum | |- ( ( R1 ` A ) ~~ ran ( G ` A ) -> ( ( R1 ` A ) e. dom card <-> ran ( G ` A ) e. dom card ) ) |
|
| 73 | 69 71 72 | 3syl | |- ( ph -> ( ( R1 ` A ) e. dom card <-> ran ( G ` A ) e. dom card ) ) |
| 74 | 67 73 | mpbird | |- ( ph -> ( R1 ` A ) e. dom card ) |