This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite abelian group is cyclic iff the exponent equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygctb.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cyggex.o | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| Assertion | cyggexb | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) → ( 𝐺 ∈ CycGrp ↔ 𝐸 = ( ♯ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cyggex.o | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 3 | 1 2 | cyggex | ⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝐵 ∈ Fin ) → 𝐸 = ( ♯ ‘ 𝐵 ) ) |
| 4 | 3 | expcom | ⊢ ( 𝐵 ∈ Fin → ( 𝐺 ∈ CycGrp → 𝐸 = ( ♯ ‘ 𝐵 ) ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) → ( 𝐺 ∈ CycGrp → 𝐸 = ( ♯ ‘ 𝐵 ) ) ) |
| 6 | simpll | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → 𝐺 ∈ Abel ) | |
| 7 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 9 | simplr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → 𝐵 ∈ Fin ) | |
| 10 | 1 2 | gexcl2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) → 𝐸 ∈ ℕ ) |
| 11 | 8 9 10 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → 𝐸 ∈ ℕ ) |
| 12 | eqid | ⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) | |
| 13 | 1 2 12 | gexex | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐸 ) |
| 14 | 6 11 13 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐸 ) |
| 15 | simplr | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝐸 = ( ♯ ‘ 𝐵 ) ) | |
| 16 | 15 | eqeq2d | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐸 ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) ) |
| 17 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 18 | eqid | ⊢ { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } = { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } | |
| 19 | 1 17 18 12 | cyggenod | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } ↔ ( 𝑥 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) ) ) |
| 20 | 8 9 19 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } ↔ ( 𝑥 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) ) ) |
| 21 | ne0i | ⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } → { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } ≠ ∅ ) | |
| 22 | 1 17 18 | iscyg2 | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } ≠ ∅ ) ) |
| 23 | 22 | baib | ⊢ ( 𝐺 ∈ Grp → ( 𝐺 ∈ CycGrp ↔ { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } ≠ ∅ ) ) |
| 24 | 8 23 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → ( 𝐺 ∈ CycGrp ↔ { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } ≠ ∅ ) ) |
| 25 | 21 24 | imbitrrid | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑦 ) ) = 𝐵 } → 𝐺 ∈ CycGrp ) ) |
| 26 | 20 25 | sylbird | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) → 𝐺 ∈ CycGrp ) ) |
| 27 | 26 | expdimp | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) → 𝐺 ∈ CycGrp ) ) |
| 28 | 16 27 | sylbid | ⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐸 → 𝐺 ∈ CycGrp ) ) |
| 29 | 28 | rexlimdva | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → ( ∃ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 𝐸 → 𝐺 ∈ CycGrp ) ) |
| 30 | 14 29 | mpd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) ∧ 𝐸 = ( ♯ ‘ 𝐵 ) ) → 𝐺 ∈ CycGrp ) |
| 31 | 30 | ex | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) → ( 𝐸 = ( ♯ ‘ 𝐵 ) → 𝐺 ∈ CycGrp ) ) |
| 32 | 5 31 | impbid | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐵 ∈ Fin ) → ( 𝐺 ∈ CycGrp ↔ 𝐸 = ( ♯ ‘ 𝐵 ) ) ) |