This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclicity is a group property, i.e. it is preserved under isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | giccyg | ⊢ ( 𝐺 ≃𝑔 𝐻 → ( 𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgic | ⊢ ( 𝐺 ≃𝑔 𝐻 ↔ ( 𝐺 GrpIso 𝐻 ) ≠ ∅ ) | |
| 2 | n0 | ⊢ ( ( 𝐺 GrpIso 𝐻 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐺 GrpIso 𝐻 ) ) | |
| 3 | gimghm | ⊢ ( 𝑓 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝑓 ∈ ( 𝐺 GrpHom 𝐻 ) ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 6 | 4 5 | gimf1o | ⊢ ( 𝑓 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝑓 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) |
| 7 | f1ofo | ⊢ ( 𝑓 : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐻 ) → 𝑓 : ( Base ‘ 𝐺 ) –onto→ ( Base ‘ 𝐻 ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑓 ∈ ( 𝐺 GrpIso 𝐻 ) → 𝑓 : ( Base ‘ 𝐺 ) –onto→ ( Base ‘ 𝐻 ) ) |
| 9 | 4 5 | ghmcyg | ⊢ ( ( 𝑓 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑓 : ( Base ‘ 𝐺 ) –onto→ ( Base ‘ 𝐻 ) ) → ( 𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp ) ) |
| 10 | 3 8 9 | syl2anc | ⊢ ( 𝑓 ∈ ( 𝐺 GrpIso 𝐻 ) → ( 𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp ) ) |
| 11 | 10 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐺 GrpIso 𝐻 ) → ( 𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp ) ) |
| 12 | 2 11 | sylbi | ⊢ ( ( 𝐺 GrpIso 𝐻 ) ≠ ∅ → ( 𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp ) ) |
| 13 | 1 12 | sylbi | ⊢ ( 𝐺 ≃𝑔 𝐻 → ( 𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp ) ) |