This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite abelian group is cyclic iff the exponent equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygctb.1 | |- B = ( Base ` G ) |
|
| cyggex.o | |- E = ( gEx ` G ) |
||
| Assertion | cyggexb | |- ( ( G e. Abel /\ B e. Fin ) -> ( G e. CycGrp <-> E = ( # ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | |- B = ( Base ` G ) |
|
| 2 | cyggex.o | |- E = ( gEx ` G ) |
|
| 3 | 1 2 | cyggex | |- ( ( G e. CycGrp /\ B e. Fin ) -> E = ( # ` B ) ) |
| 4 | 3 | expcom | |- ( B e. Fin -> ( G e. CycGrp -> E = ( # ` B ) ) ) |
| 5 | 4 | adantl | |- ( ( G e. Abel /\ B e. Fin ) -> ( G e. CycGrp -> E = ( # ` B ) ) ) |
| 6 | simpll | |- ( ( ( G e. Abel /\ B e. Fin ) /\ E = ( # ` B ) ) -> G e. Abel ) |
|
| 7 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 8 | 7 | ad2antrr | |- ( ( ( G e. Abel /\ B e. Fin ) /\ E = ( # ` B ) ) -> G e. Grp ) |
| 9 | simplr | |- ( ( ( G e. Abel /\ B e. Fin ) /\ E = ( # ` B ) ) -> B e. Fin ) |
|
| 10 | 1 2 | gexcl2 | |- ( ( G e. Grp /\ B e. Fin ) -> E e. NN ) |
| 11 | 8 9 10 | syl2anc | |- ( ( ( G e. Abel /\ B e. Fin ) /\ E = ( # ` B ) ) -> E e. NN ) |
| 12 | eqid | |- ( od ` G ) = ( od ` G ) |
|
| 13 | 1 2 12 | gexex | |- ( ( G e. Abel /\ E e. NN ) -> E. x e. B ( ( od ` G ) ` x ) = E ) |
| 14 | 6 11 13 | syl2anc | |- ( ( ( G e. Abel /\ B e. Fin ) /\ E = ( # ` B ) ) -> E. x e. B ( ( od ` G ) ` x ) = E ) |
| 15 | simplr | |- ( ( ( ( G e. Abel /\ B e. Fin ) /\ E = ( # ` B ) ) /\ x e. B ) -> E = ( # ` B ) ) |
|
| 16 | 15 | eqeq2d | |- ( ( ( ( G e. Abel /\ B e. Fin ) /\ E = ( # ` B ) ) /\ x e. B ) -> ( ( ( od ` G ) ` x ) = E <-> ( ( od ` G ) ` x ) = ( # ` B ) ) ) |
| 17 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 18 | eqid | |- { y e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B } = { y e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B } |
|
| 19 | 1 17 18 12 | cyggenod | |- ( ( G e. Grp /\ B e. Fin ) -> ( x e. { y e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B } <-> ( x e. B /\ ( ( od ` G ) ` x ) = ( # ` B ) ) ) ) |
| 20 | 8 9 19 | syl2anc | |- ( ( ( G e. Abel /\ B e. Fin ) /\ E = ( # ` B ) ) -> ( x e. { y e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B } <-> ( x e. B /\ ( ( od ` G ) ` x ) = ( # ` B ) ) ) ) |
| 21 | ne0i | |- ( x e. { y e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B } -> { y e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B } =/= (/) ) |
|
| 22 | 1 17 18 | iscyg2 | |- ( G e. CycGrp <-> ( G e. Grp /\ { y e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B } =/= (/) ) ) |
| 23 | 22 | baib | |- ( G e. Grp -> ( G e. CycGrp <-> { y e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B } =/= (/) ) ) |
| 24 | 8 23 | syl | |- ( ( ( G e. Abel /\ B e. Fin ) /\ E = ( # ` B ) ) -> ( G e. CycGrp <-> { y e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B } =/= (/) ) ) |
| 25 | 21 24 | imbitrrid | |- ( ( ( G e. Abel /\ B e. Fin ) /\ E = ( # ` B ) ) -> ( x e. { y e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) y ) ) = B } -> G e. CycGrp ) ) |
| 26 | 20 25 | sylbird | |- ( ( ( G e. Abel /\ B e. Fin ) /\ E = ( # ` B ) ) -> ( ( x e. B /\ ( ( od ` G ) ` x ) = ( # ` B ) ) -> G e. CycGrp ) ) |
| 27 | 26 | expdimp | |- ( ( ( ( G e. Abel /\ B e. Fin ) /\ E = ( # ` B ) ) /\ x e. B ) -> ( ( ( od ` G ) ` x ) = ( # ` B ) -> G e. CycGrp ) ) |
| 28 | 16 27 | sylbid | |- ( ( ( ( G e. Abel /\ B e. Fin ) /\ E = ( # ` B ) ) /\ x e. B ) -> ( ( ( od ` G ) ` x ) = E -> G e. CycGrp ) ) |
| 29 | 28 | rexlimdva | |- ( ( ( G e. Abel /\ B e. Fin ) /\ E = ( # ` B ) ) -> ( E. x e. B ( ( od ` G ) ` x ) = E -> G e. CycGrp ) ) |
| 30 | 14 29 | mpd | |- ( ( ( G e. Abel /\ B e. Fin ) /\ E = ( # ` B ) ) -> G e. CycGrp ) |
| 31 | 30 | ex | |- ( ( G e. Abel /\ B e. Fin ) -> ( E = ( # ` B ) -> G e. CycGrp ) ) |
| 32 | 5 31 | impbid | |- ( ( G e. Abel /\ B e. Fin ) -> ( G e. CycGrp <-> E = ( # ` B ) ) ) |