This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of a cyclic generator is a generator. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| iscyg3.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | ||
| cyggeninv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | cyggeninv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | iscyg3.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | |
| 4 | cyggeninv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 5 | 1 2 3 | iscyggen2 | ⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) ) ) |
| 6 | 5 | simprbda | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → 𝑋 ∈ 𝐵 ) |
| 7 | 1 4 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 8 | 6 7 | syldan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 9 | 5 | simplbda | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) |
| 10 | oveq1 | ⊢ ( 𝑛 = 𝑚 → ( 𝑛 · 𝑋 ) = ( 𝑚 · 𝑋 ) ) | |
| 11 | 10 | eqeq2d | ⊢ ( 𝑛 = 𝑚 → ( 𝑦 = ( 𝑛 · 𝑋 ) ↔ 𝑦 = ( 𝑚 · 𝑋 ) ) ) |
| 12 | 11 | cbvrexvw | ⊢ ( ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ↔ ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝑚 · 𝑋 ) ) |
| 13 | znegcl | ⊢ ( 𝑚 ∈ ℤ → - 𝑚 ∈ ℤ ) | |
| 14 | 13 | adantl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → - 𝑚 ∈ ℤ ) |
| 15 | simpr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → 𝑚 ∈ ℤ ) | |
| 16 | 15 | zcnd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → 𝑚 ∈ ℂ ) |
| 17 | 16 | negnegd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → - - 𝑚 = 𝑚 ) |
| 18 | 17 | oveq1d | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → ( - - 𝑚 · 𝑋 ) = ( 𝑚 · 𝑋 ) ) |
| 19 | simplll | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → 𝐺 ∈ Grp ) | |
| 20 | 6 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → 𝑋 ∈ 𝐵 ) |
| 21 | 1 2 4 | mulgneg2 | ⊢ ( ( 𝐺 ∈ Grp ∧ - 𝑚 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - - 𝑚 · 𝑋 ) = ( - 𝑚 · ( 𝑁 ‘ 𝑋 ) ) ) |
| 22 | 19 14 20 21 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → ( - - 𝑚 · 𝑋 ) = ( - 𝑚 · ( 𝑁 ‘ 𝑋 ) ) ) |
| 23 | 18 22 | eqtr3d | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → ( 𝑚 · 𝑋 ) = ( - 𝑚 · ( 𝑁 ‘ 𝑋 ) ) ) |
| 24 | oveq1 | ⊢ ( 𝑛 = - 𝑚 → ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) = ( - 𝑚 · ( 𝑁 ‘ 𝑋 ) ) ) | |
| 25 | 24 | rspceeqv | ⊢ ( ( - 𝑚 ∈ ℤ ∧ ( 𝑚 · 𝑋 ) = ( - 𝑚 · ( 𝑁 ‘ 𝑋 ) ) ) → ∃ 𝑛 ∈ ℤ ( 𝑚 · 𝑋 ) = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) |
| 26 | 14 23 25 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → ∃ 𝑛 ∈ ℤ ( 𝑚 · 𝑋 ) = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) |
| 27 | eqeq1 | ⊢ ( 𝑦 = ( 𝑚 · 𝑋 ) → ( 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ↔ ( 𝑚 · 𝑋 ) = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) ) | |
| 28 | 27 | rexbidv | ⊢ ( 𝑦 = ( 𝑚 · 𝑋 ) → ( ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ↔ ∃ 𝑛 ∈ ℤ ( 𝑚 · 𝑋 ) = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 29 | 26 28 | syl5ibrcom | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑚 ∈ ℤ ) → ( 𝑦 = ( 𝑚 · 𝑋 ) → ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 30 | 29 | rexlimdva | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝑚 · 𝑋 ) → ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 31 | 12 30 | biimtrid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) → ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 32 | 31 | ralimdva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) → ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 33 | 9 32 | mpd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) |
| 34 | 1 2 3 | iscyggen2 | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐸 ↔ ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐸 ↔ ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · ( 𝑁 ‘ 𝑋 ) ) ) ) ) |
| 36 | 8 33 35 | mpbir2and | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐸 ) |