This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cyclic subgroup generated by A is a cyclic group. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubgcyg.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| cycsubgcyg.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| cycsubgcyg.s | ⊢ 𝑆 = ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | ||
| Assertion | cycsubgcyg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐺 ↾s 𝑆 ) ∈ CycGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubgcyg.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | cycsubgcyg.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | cycsubgcyg.s | ⊢ 𝑆 = ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | |
| 4 | eqid | ⊢ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) | |
| 5 | eqid | ⊢ ( .g ‘ ( 𝐺 ↾s 𝑆 ) ) = ( .g ‘ ( 𝐺 ↾s 𝑆 ) ) | |
| 6 | eqid | ⊢ ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | |
| 7 | 1 2 6 | cycsubgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) ) ) |
| 8 | 7 | simpld | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 9 | 3 8 | eqeltrid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 10 | eqid | ⊢ ( 𝐺 ↾s 𝑆 ) = ( 𝐺 ↾s 𝑆 ) | |
| 11 | 10 | subggrp | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
| 12 | 9 11 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
| 13 | 7 | simprd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) ) |
| 14 | 13 3 | eleqtrrdi | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑆 ) |
| 15 | 10 | subgbas | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 16 | 9 15 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 17 | 14 16 | eleqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 18 | 16 | eleq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑆 ↔ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) ) |
| 19 | 18 | biimpar | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) → 𝑦 ∈ 𝑆 ) |
| 20 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) | |
| 21 | 20 3 | eleqtrdi | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) ) |
| 22 | oveq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 · 𝐴 ) = ( 𝑛 · 𝐴 ) ) | |
| 23 | 22 | cbvmptv | ⊢ ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) |
| 24 | ovex | ⊢ ( 𝑛 · 𝐴 ) ∈ V | |
| 25 | 23 24 | elrnmpti | ⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) ↔ ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝐴 ) ) |
| 26 | 21 25 | sylib | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) → ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝐴 ) ) |
| 27 | 9 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑛 ∈ ℤ ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 28 | simpr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℤ ) | |
| 29 | 14 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑛 ∈ ℤ ) → 𝐴 ∈ 𝑆 ) |
| 30 | 2 10 5 | subgmulg | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ 𝑆 ) → ( 𝑛 · 𝐴 ) = ( 𝑛 ( .g ‘ ( 𝐺 ↾s 𝑆 ) ) 𝐴 ) ) |
| 31 | 27 28 29 30 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 · 𝐴 ) = ( 𝑛 ( .g ‘ ( 𝐺 ↾s 𝑆 ) ) 𝐴 ) ) |
| 32 | 31 | eqeq2d | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑛 ∈ ℤ ) → ( 𝑦 = ( 𝑛 · 𝐴 ) ↔ 𝑦 = ( 𝑛 ( .g ‘ ( 𝐺 ↾s 𝑆 ) ) 𝐴 ) ) ) |
| 33 | 32 | rexbidva | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) → ( ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝐴 ) ↔ ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ ( 𝐺 ↾s 𝑆 ) ) 𝐴 ) ) ) |
| 34 | 26 33 | mpbid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) → ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ ( 𝐺 ↾s 𝑆 ) ) 𝐴 ) ) |
| 35 | 19 34 | syldan | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) → ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ ( 𝐺 ↾s 𝑆 ) ) 𝐴 ) ) |
| 36 | 4 5 12 17 35 | iscygd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐺 ↾s 𝑆 ) ∈ CycGrp ) |