This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cyclic subgroup generated by A is a cyclic group. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubgcyg2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cycsubgcyg2.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | ||
| Assertion | cycsubgcyg2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ( 𝐺 ↾s ( 𝐾 ‘ { 𝐴 } ) ) ∈ CycGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubgcyg2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cycsubgcyg2.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝐴 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝐴 ) ) | |
| 5 | 1 3 4 2 | cycsubg2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝐴 } ) = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝐴 ) ) ) |
| 6 | 5 | oveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ( 𝐺 ↾s ( 𝐾 ‘ { 𝐴 } ) ) = ( 𝐺 ↾s ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) |
| 7 | eqid | ⊢ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝐴 ) ) = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝐴 ) ) | |
| 8 | 1 3 7 | cycsubgcyg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ( 𝐺 ↾s ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ∈ CycGrp ) |
| 9 | 6 8 | eqeltrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ( 𝐺 ↾s ( 𝐾 ‘ { 𝐴 } ) ) ∈ CycGrp ) |