This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cyclic group generated by A is the smallest subgroup containing A . (Contributed by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubg.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| cycsubg.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| cycsubg.f | ⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | ||
| Assertion | cycsubg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ran 𝐹 = ∩ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubg.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | cycsubg.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | cycsubg.f | ⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | |
| 4 | ssintab | ⊢ ( ran 𝐹 ⊆ ∩ { 𝑠 ∣ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) } ↔ ∀ 𝑠 ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ran 𝐹 ⊆ 𝑠 ) ) | |
| 5 | 1 2 3 | cycsubgss | ⊢ ( ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) → ran 𝐹 ⊆ 𝑠 ) |
| 6 | 4 5 | mpgbir | ⊢ ran 𝐹 ⊆ ∩ { 𝑠 ∣ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) } |
| 7 | df-rab | ⊢ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } = { 𝑠 ∣ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) } | |
| 8 | 7 | inteqi | ⊢ ∩ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } = ∩ { 𝑠 ∣ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑠 ) } |
| 9 | 6 8 | sseqtrri | ⊢ ran 𝐹 ⊆ ∩ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } |
| 10 | 9 | a1i | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ran 𝐹 ⊆ ∩ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } ) |
| 11 | 1 2 3 | cycsubgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ran 𝐹 ) ) |
| 12 | eleq2 | ⊢ ( 𝑠 = ran 𝐹 → ( 𝐴 ∈ 𝑠 ↔ 𝐴 ∈ ran 𝐹 ) ) | |
| 13 | 12 | elrab | ⊢ ( ran 𝐹 ∈ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } ↔ ( ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ran 𝐹 ) ) |
| 14 | 11 13 | sylibr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ran 𝐹 ∈ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } ) |
| 15 | intss1 | ⊢ ( ran 𝐹 ∈ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } → ∩ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } ⊆ ran 𝐹 ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ∩ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } ⊆ ran 𝐹 ) |
| 17 | 10 16 | eqssd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ran 𝐹 = ∩ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑠 } ) |