This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subgroup generated by an element is exhausted by its multiples. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubg2.x | |- X = ( Base ` G ) |
|
| cycsubg2.t | |- .x. = ( .g ` G ) |
||
| cycsubg2.f | |- F = ( x e. ZZ |-> ( x .x. A ) ) |
||
| cycsubg2.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
||
| Assertion | cycsubg2 | |- ( ( G e. Grp /\ A e. X ) -> ( K ` { A } ) = ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubg2.x | |- X = ( Base ` G ) |
|
| 2 | cycsubg2.t | |- .x. = ( .g ` G ) |
|
| 3 | cycsubg2.f | |- F = ( x e. ZZ |-> ( x .x. A ) ) |
|
| 4 | cycsubg2.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
|
| 5 | snssg | |- ( A e. X -> ( A e. y <-> { A } C_ y ) ) |
|
| 6 | 5 | bicomd | |- ( A e. X -> ( { A } C_ y <-> A e. y ) ) |
| 7 | 6 | adantl | |- ( ( G e. Grp /\ A e. X ) -> ( { A } C_ y <-> A e. y ) ) |
| 8 | 7 | rabbidv | |- ( ( G e. Grp /\ A e. X ) -> { y e. ( SubGrp ` G ) | { A } C_ y } = { y e. ( SubGrp ` G ) | A e. y } ) |
| 9 | 8 | inteqd | |- ( ( G e. Grp /\ A e. X ) -> |^| { y e. ( SubGrp ` G ) | { A } C_ y } = |^| { y e. ( SubGrp ` G ) | A e. y } ) |
| 10 | 1 | subgacs | |- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` X ) ) |
| 11 | 10 | acsmred | |- ( G e. Grp -> ( SubGrp ` G ) e. ( Moore ` X ) ) |
| 12 | snssi | |- ( A e. X -> { A } C_ X ) |
|
| 13 | 4 | mrcval | |- ( ( ( SubGrp ` G ) e. ( Moore ` X ) /\ { A } C_ X ) -> ( K ` { A } ) = |^| { y e. ( SubGrp ` G ) | { A } C_ y } ) |
| 14 | 11 12 13 | syl2an | |- ( ( G e. Grp /\ A e. X ) -> ( K ` { A } ) = |^| { y e. ( SubGrp ` G ) | { A } C_ y } ) |
| 15 | 1 2 3 | cycsubg | |- ( ( G e. Grp /\ A e. X ) -> ran F = |^| { y e. ( SubGrp ` G ) | A e. y } ) |
| 16 | 9 14 15 | 3eqtr4d | |- ( ( G e. Grp /\ A e. X ) -> ( K ` { A } ) = ran F ) |