This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1cxp | ⊢ ( 𝐴 ∈ ℂ → ( 1 ↑𝑐 𝐴 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 3 | cxpef | ⊢ ( ( 1 ∈ ℂ ∧ 1 ≠ 0 ∧ 𝐴 ∈ ℂ ) → ( 1 ↑𝑐 𝐴 ) = ( exp ‘ ( 𝐴 · ( log ‘ 1 ) ) ) ) | |
| 4 | 1 2 3 | mp3an12 | ⊢ ( 𝐴 ∈ ℂ → ( 1 ↑𝑐 𝐴 ) = ( exp ‘ ( 𝐴 · ( log ‘ 1 ) ) ) ) |
| 5 | log1 | ⊢ ( log ‘ 1 ) = 0 | |
| 6 | 5 | oveq2i | ⊢ ( 𝐴 · ( log ‘ 1 ) ) = ( 𝐴 · 0 ) |
| 7 | mul01 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) | |
| 8 | 6 7 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( log ‘ 1 ) ) = 0 ) |
| 9 | 8 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( 𝐴 · ( log ‘ 1 ) ) ) = ( exp ‘ 0 ) ) |
| 10 | ef0 | ⊢ ( exp ‘ 0 ) = 1 | |
| 11 | 9 10 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( 𝐴 · ( log ‘ 1 ) ) ) = 1 ) |
| 12 | 4 11 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( 1 ↑𝑐 𝐴 ) = 1 ) |