This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxplt3 | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 < 𝐶 ↔ ( 𝐴 ↑𝑐 𝐶 ) < ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 𝐴 ∈ ℝ+ ) | |
| 2 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 𝐵 ∈ ℝ ) | |
| 3 | 2 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 𝐵 ∈ ℂ ) |
| 4 | cxprec | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ( 1 / 𝐴 ) ↑𝑐 𝐵 ) = ( 1 / ( 𝐴 ↑𝑐 𝐵 ) ) ) | |
| 5 | 1 3 4 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ( 1 / 𝐴 ) ↑𝑐 𝐵 ) = ( 1 / ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 6 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 𝐶 ∈ ℝ ) | |
| 7 | 6 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 𝐶 ∈ ℂ ) |
| 8 | cxprec | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℂ ) → ( ( 1 / 𝐴 ) ↑𝑐 𝐶 ) = ( 1 / ( 𝐴 ↑𝑐 𝐶 ) ) ) | |
| 9 | 1 7 8 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ( 1 / 𝐴 ) ↑𝑐 𝐶 ) = ( 1 / ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 10 | 5 9 | breq12d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ( ( 1 / 𝐴 ) ↑𝑐 𝐵 ) < ( ( 1 / 𝐴 ) ↑𝑐 𝐶 ) ↔ ( 1 / ( 𝐴 ↑𝑐 𝐵 ) ) < ( 1 / ( 𝐴 ↑𝑐 𝐶 ) ) ) ) |
| 11 | 1 | rprecred | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 12 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 𝐴 < 1 ) | |
| 13 | 1 | reclt1d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 < 1 ↔ 1 < ( 1 / 𝐴 ) ) ) |
| 14 | 12 13 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 1 < ( 1 / 𝐴 ) ) |
| 15 | cxplt | ⊢ ( ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ 1 < ( 1 / 𝐴 ) ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 < 𝐶 ↔ ( ( 1 / 𝐴 ) ↑𝑐 𝐵 ) < ( ( 1 / 𝐴 ) ↑𝑐 𝐶 ) ) ) | |
| 16 | 11 14 2 6 15 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 < 𝐶 ↔ ( ( 1 / 𝐴 ) ↑𝑐 𝐵 ) < ( ( 1 / 𝐴 ) ↑𝑐 𝐶 ) ) ) |
| 17 | rpcxpcl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ+ ) | |
| 18 | 17 | ad2ant2rl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ+ ) |
| 19 | rpcxpcl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ+ ) | |
| 20 | 19 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ+ ) |
| 21 | 18 20 | ltrecd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ( 𝐴 ↑𝑐 𝐶 ) < ( 𝐴 ↑𝑐 𝐵 ) ↔ ( 1 / ( 𝐴 ↑𝑐 𝐵 ) ) < ( 1 / ( 𝐴 ↑𝑐 𝐶 ) ) ) ) |
| 22 | 10 16 21 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 < 𝐶 ↔ ( 𝐴 ↑𝑐 𝐶 ) < ( 𝐴 ↑𝑐 𝐵 ) ) ) |