This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxple3 | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxplt3 | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐶 < 𝐵 ↔ ( 𝐴 ↑𝑐 𝐵 ) < ( 𝐴 ↑𝑐 𝐶 ) ) ) | |
| 2 | 1 | ancom2s | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐶 < 𝐵 ↔ ( 𝐴 ↑𝑐 𝐵 ) < ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 3 | 2 | notbid | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ¬ 𝐶 < 𝐵 ↔ ¬ ( 𝐴 ↑𝑐 𝐵 ) < ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 4 | lenlt | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵 ) ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵 ) ) |
| 6 | rpcxpcl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ+ ) | |
| 7 | 6 | ad2ant2rl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ+ ) |
| 8 | rpcxpcl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ+ ) | |
| 9 | 8 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ+ ) |
| 10 | rpre | ⊢ ( ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ+ → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ ) | |
| 11 | rpre | ⊢ ( ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ+ → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ ) | |
| 12 | lenlt | ⊢ ( ( ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ ∧ ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ ) → ( ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐴 ↑𝑐 𝐵 ) ↔ ¬ ( 𝐴 ↑𝑐 𝐵 ) < ( 𝐴 ↑𝑐 𝐶 ) ) ) | |
| 13 | 10 11 12 | syl2an | ⊢ ( ( ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ+ ∧ ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ+ ) → ( ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐴 ↑𝑐 𝐵 ) ↔ ¬ ( 𝐴 ↑𝑐 𝐵 ) < ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 14 | 7 9 13 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐴 ↑𝑐 𝐵 ) ↔ ¬ ( 𝐴 ↑𝑐 𝐵 ) < ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 15 | 3 5 14 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐴 ↑𝑐 𝐵 ) ) ) |