This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxplt3 | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( B < C <-> ( A ^c C ) < ( A ^c B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> A e. RR+ ) |
|
| 2 | simprl | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> B e. RR ) |
|
| 3 | 2 | recnd | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> B e. CC ) |
| 4 | cxprec | |- ( ( A e. RR+ /\ B e. CC ) -> ( ( 1 / A ) ^c B ) = ( 1 / ( A ^c B ) ) ) |
|
| 5 | 1 3 4 | syl2anc | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( 1 / A ) ^c B ) = ( 1 / ( A ^c B ) ) ) |
| 6 | simprr | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> C e. RR ) |
|
| 7 | 6 | recnd | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> C e. CC ) |
| 8 | cxprec | |- ( ( A e. RR+ /\ C e. CC ) -> ( ( 1 / A ) ^c C ) = ( 1 / ( A ^c C ) ) ) |
|
| 9 | 1 7 8 | syl2anc | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( 1 / A ) ^c C ) = ( 1 / ( A ^c C ) ) ) |
| 10 | 5 9 | breq12d | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( ( 1 / A ) ^c B ) < ( ( 1 / A ) ^c C ) <-> ( 1 / ( A ^c B ) ) < ( 1 / ( A ^c C ) ) ) ) |
| 11 | 1 | rprecred | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( 1 / A ) e. RR ) |
| 12 | simplr | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> A < 1 ) |
|
| 13 | 1 | reclt1d | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( A < 1 <-> 1 < ( 1 / A ) ) ) |
| 14 | 12 13 | mpbid | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> 1 < ( 1 / A ) ) |
| 15 | cxplt | |- ( ( ( ( 1 / A ) e. RR /\ 1 < ( 1 / A ) ) /\ ( B e. RR /\ C e. RR ) ) -> ( B < C <-> ( ( 1 / A ) ^c B ) < ( ( 1 / A ) ^c C ) ) ) |
|
| 16 | 11 14 2 6 15 | syl22anc | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( B < C <-> ( ( 1 / A ) ^c B ) < ( ( 1 / A ) ^c C ) ) ) |
| 17 | rpcxpcl | |- ( ( A e. RR+ /\ C e. RR ) -> ( A ^c C ) e. RR+ ) |
|
| 18 | 17 | ad2ant2rl | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( A ^c C ) e. RR+ ) |
| 19 | rpcxpcl | |- ( ( A e. RR+ /\ B e. RR ) -> ( A ^c B ) e. RR+ ) |
|
| 20 | 19 | ad2ant2r | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( A ^c B ) e. RR+ ) |
| 21 | 18 20 | ltrecd | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( ( A ^c C ) < ( A ^c B ) <-> ( 1 / ( A ^c B ) ) < ( 1 / ( A ^c C ) ) ) ) |
| 22 | 10 16 21 | 3bitr4d | |- ( ( ( A e. RR+ /\ A < 1 ) /\ ( B e. RR /\ C e. RR ) ) -> ( B < C <-> ( A ^c C ) < ( A ^c B ) ) ) |