This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 10-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxplea | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) ∧ 1 < 𝐴 ) → 𝐵 ≤ 𝐶 ) | |
| 2 | simpl1l | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 3 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) ∧ 1 < 𝐴 ) → 1 < 𝐴 ) | |
| 4 | simpl2 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) ∧ 1 < 𝐴 ) → ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) | |
| 5 | cxple | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) | |
| 6 | 2 3 4 5 | syl21anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) ∧ 1 < 𝐴 ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 7 | 1 6 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) ∧ 1 < 𝐴 ) → ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) |
| 8 | 1le1 | ⊢ 1 ≤ 1 | |
| 9 | simp2l | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → 𝐵 ∈ ℝ ) | |
| 10 | 9 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → 𝐵 ∈ ℂ ) |
| 11 | 1cxp | ⊢ ( 𝐵 ∈ ℂ → ( 1 ↑𝑐 𝐵 ) = 1 ) | |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → ( 1 ↑𝑐 𝐵 ) = 1 ) |
| 13 | simp2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → 𝐶 ∈ ℝ ) | |
| 14 | 13 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → 𝐶 ∈ ℂ ) |
| 15 | 1cxp | ⊢ ( 𝐶 ∈ ℂ → ( 1 ↑𝑐 𝐶 ) = 1 ) | |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → ( 1 ↑𝑐 𝐶 ) = 1 ) |
| 17 | 12 16 | breq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → ( ( 1 ↑𝑐 𝐵 ) ≤ ( 1 ↑𝑐 𝐶 ) ↔ 1 ≤ 1 ) ) |
| 18 | 8 17 | mpbiri | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → ( 1 ↑𝑐 𝐵 ) ≤ ( 1 ↑𝑐 𝐶 ) ) |
| 19 | oveq1 | ⊢ ( 1 = 𝐴 → ( 1 ↑𝑐 𝐵 ) = ( 𝐴 ↑𝑐 𝐵 ) ) | |
| 20 | oveq1 | ⊢ ( 1 = 𝐴 → ( 1 ↑𝑐 𝐶 ) = ( 𝐴 ↑𝑐 𝐶 ) ) | |
| 21 | 19 20 | breq12d | ⊢ ( 1 = 𝐴 → ( ( 1 ↑𝑐 𝐵 ) ≤ ( 1 ↑𝑐 𝐶 ) ↔ ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 22 | 18 21 | syl5ibcom | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → ( 1 = 𝐴 → ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 23 | 22 | imp | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) ∧ 1 = 𝐴 ) → ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) |
| 24 | 1re | ⊢ 1 ∈ ℝ | |
| 25 | leloe | ⊢ ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 1 ≤ 𝐴 ↔ ( 1 < 𝐴 ∨ 1 = 𝐴 ) ) ) | |
| 26 | 24 25 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 1 ≤ 𝐴 ↔ ( 1 < 𝐴 ∨ 1 = 𝐴 ) ) ) |
| 27 | 26 | biimpa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 1 < 𝐴 ∨ 1 = 𝐴 ) ) |
| 28 | 27 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → ( 1 < 𝐴 ∨ 1 = 𝐴 ) ) |
| 29 | 7 23 28 | mpjaodan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ≤ 𝐶 ) → ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) |