This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxple | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxplt | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐶 < 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) < ( 𝐴 ↑𝑐 𝐵 ) ) ) | |
| 2 | 1 | ancom2s | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐶 < 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) < ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 3 | 2 | notbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ¬ 𝐶 < 𝐵 ↔ ¬ ( 𝐴 ↑𝑐 𝐶 ) < ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 4 | lenlt | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵 ) ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵 ) ) |
| 6 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 𝐴 ∈ ℝ ) | |
| 7 | 0red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 0 ∈ ℝ ) | |
| 8 | 1red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 1 ∈ ℝ ) | |
| 9 | 0lt1 | ⊢ 0 < 1 | |
| 10 | 9 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 0 < 1 ) |
| 11 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 1 < 𝐴 ) | |
| 12 | 7 8 6 10 11 | lttrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 0 < 𝐴 ) |
| 13 | 7 6 12 | ltled | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 0 ≤ 𝐴 ) |
| 14 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 𝐵 ∈ ℝ ) | |
| 15 | recxpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ ) | |
| 16 | 6 13 14 15 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℝ ) |
| 17 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → 𝐶 ∈ ℝ ) | |
| 18 | recxpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ ) | |
| 19 | 6 13 17 18 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ ) |
| 20 | 16 19 | lenltd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ↔ ¬ ( 𝐴 ↑𝑐 𝐶 ) < ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 21 | 3 5 20 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐴 ↑𝑐 𝐵 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) |