This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxple2a | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → 𝐴 ≤ 𝐵 ) | |
| 2 | simp11 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) | |
| 3 | 2 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → 𝐴 ∈ ℝ ) |
| 4 | simpl2l | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → 0 ≤ 𝐴 ) | |
| 5 | simp12 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 6 | 5 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → 𝐵 ∈ ℝ ) |
| 7 | 0red | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → 0 ∈ ℝ ) | |
| 8 | 7 3 6 4 1 | letrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → 0 ≤ 𝐵 ) |
| 9 | simp13 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → 𝐶 ∈ ℝ ) | |
| 10 | 9 | anim1i | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) |
| 11 | elrp | ⊢ ( 𝐶 ∈ ℝ+ ↔ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) | |
| 12 | 10 11 | sylibr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → 𝐶 ∈ ℝ+ ) |
| 13 | cxple2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) ) | |
| 14 | 3 4 6 8 12 13 | syl221anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| 15 | 1 14 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 < 𝐶 ) → ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) |
| 16 | 1le1 | ⊢ 1 ≤ 1 | |
| 17 | 16 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 = 𝐶 ) → 1 ≤ 1 ) |
| 18 | 2 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℂ ) |
| 19 | cxp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 0 ) = 1 ) | |
| 20 | 18 19 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ↑𝑐 0 ) = 1 ) |
| 21 | oveq2 | ⊢ ( 0 = 𝐶 → ( 𝐴 ↑𝑐 0 ) = ( 𝐴 ↑𝑐 𝐶 ) ) | |
| 22 | 20 21 | sylan9req | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 = 𝐶 ) → 1 = ( 𝐴 ↑𝑐 𝐶 ) ) |
| 23 | 5 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℂ ) |
| 24 | cxp0 | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑𝑐 0 ) = 1 ) | |
| 25 | 23 24 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 ↑𝑐 0 ) = 1 ) |
| 26 | oveq2 | ⊢ ( 0 = 𝐶 → ( 𝐵 ↑𝑐 0 ) = ( 𝐵 ↑𝑐 𝐶 ) ) | |
| 27 | 25 26 | sylan9req | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 = 𝐶 ) → 1 = ( 𝐵 ↑𝑐 𝐶 ) ) |
| 28 | 17 22 27 | 3brtr3d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) ∧ 0 = 𝐶 ) → ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) |
| 29 | simp2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → 0 ≤ 𝐶 ) | |
| 30 | 0re | ⊢ 0 ∈ ℝ | |
| 31 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 0 ≤ 𝐶 ↔ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) ) | |
| 32 | 30 9 31 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → ( 0 ≤ 𝐶 ↔ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) ) |
| 33 | 29 32 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) |
| 34 | 15 28 33 | mpjaodan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) |