This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvsdiveqd.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| cvsdiveqd.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| cvsdiveqd.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| cvsdiveqd.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| cvsdiveqd.w | ⊢ ( 𝜑 → 𝑊 ∈ ℂVec ) | ||
| cvsdiveqd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| cvsdiveqd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | ||
| cvsdiveqd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| cvsdiveqd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| cvsdiveqd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| cvsmuleqdivd.1 | ⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) = ( 𝐵 · 𝑌 ) ) | ||
| Assertion | cvsmuleqdivd | ⊢ ( 𝜑 → 𝑋 = ( ( 𝐵 / 𝐴 ) · 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvsdiveqd.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | cvsdiveqd.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | cvsdiveqd.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | cvsdiveqd.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | cvsdiveqd.w | ⊢ ( 𝜑 → 𝑊 ∈ ℂVec ) | |
| 6 | cvsdiveqd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 7 | cvsdiveqd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | |
| 8 | cvsdiveqd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 9 | cvsdiveqd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 10 | cvsdiveqd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 11 | cvsmuleqdivd.1 | ⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) = ( 𝐵 · 𝑌 ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝜑 → ( ( 1 / 𝐴 ) · ( 𝐴 · 𝑋 ) ) = ( ( 1 / 𝐴 ) · ( 𝐵 · 𝑌 ) ) ) |
| 13 | 5 | cvsclm | ⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| 14 | 3 4 | clmsscn | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → 𝐾 ⊆ ℂ ) |
| 16 | 15 6 | sseldd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 17 | 16 10 | recid2d | ⊢ ( 𝜑 → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) |
| 18 | 17 | oveq1d | ⊢ ( 𝜑 → ( ( ( 1 / 𝐴 ) · 𝐴 ) · 𝑋 ) = ( 1 · 𝑋 ) ) |
| 19 | 3 | clm1 | ⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ 𝐹 ) ) |
| 20 | 13 19 | syl | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝐹 ) ) |
| 21 | 3 | clmring | ⊢ ( 𝑊 ∈ ℂMod → 𝐹 ∈ Ring ) |
| 22 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 23 | 4 22 | ringidcl | ⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 24 | 13 21 23 | 3syl | ⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 25 | 20 24 | eqeltrd | ⊢ ( 𝜑 → 1 ∈ 𝐾 ) |
| 26 | 3 4 | cvsdivcl | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 1 ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → ( 1 / 𝐴 ) ∈ 𝐾 ) |
| 27 | 5 25 6 10 26 | syl13anc | ⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ 𝐾 ) |
| 28 | 1 3 2 4 | clmvsass | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( ( 1 / 𝐴 ) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) · 𝑋 ) = ( ( 1 / 𝐴 ) · ( 𝐴 · 𝑋 ) ) ) |
| 29 | 13 27 6 8 28 | syl13anc | ⊢ ( 𝜑 → ( ( ( 1 / 𝐴 ) · 𝐴 ) · 𝑋 ) = ( ( 1 / 𝐴 ) · ( 𝐴 · 𝑋 ) ) ) |
| 30 | 1 2 | clmvs1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 31 | 13 8 30 | syl2anc | ⊢ ( 𝜑 → ( 1 · 𝑋 ) = 𝑋 ) |
| 32 | 18 29 31 | 3eqtr3d | ⊢ ( 𝜑 → ( ( 1 / 𝐴 ) · ( 𝐴 · 𝑋 ) ) = 𝑋 ) |
| 33 | 15 7 | sseldd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 34 | 33 16 10 | divrec2d | ⊢ ( 𝜑 → ( 𝐵 / 𝐴 ) = ( ( 1 / 𝐴 ) · 𝐵 ) ) |
| 35 | 34 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐵 / 𝐴 ) · 𝑌 ) = ( ( ( 1 / 𝐴 ) · 𝐵 ) · 𝑌 ) ) |
| 36 | 1 3 2 4 | clmvsass | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( ( 1 / 𝐴 ) ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 1 / 𝐴 ) · 𝐵 ) · 𝑌 ) = ( ( 1 / 𝐴 ) · ( 𝐵 · 𝑌 ) ) ) |
| 37 | 13 27 7 9 36 | syl13anc | ⊢ ( 𝜑 → ( ( ( 1 / 𝐴 ) · 𝐵 ) · 𝑌 ) = ( ( 1 / 𝐴 ) · ( 𝐵 · 𝑌 ) ) ) |
| 38 | 35 37 | eqtr2d | ⊢ ( 𝜑 → ( ( 1 / 𝐴 ) · ( 𝐵 · 𝑌 ) ) = ( ( 𝐵 / 𝐴 ) · 𝑌 ) ) |
| 39 | 12 32 38 | 3eqtr3d | ⊢ ( 𝜑 → 𝑋 = ( ( 𝐵 / 𝐴 ) · 𝑌 ) ) |