This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvsdiveqd.v | |- V = ( Base ` W ) |
|
| cvsdiveqd.t | |- .x. = ( .s ` W ) |
||
| cvsdiveqd.f | |- F = ( Scalar ` W ) |
||
| cvsdiveqd.k | |- K = ( Base ` F ) |
||
| cvsdiveqd.w | |- ( ph -> W e. CVec ) |
||
| cvsdiveqd.a | |- ( ph -> A e. K ) |
||
| cvsdiveqd.b | |- ( ph -> B e. K ) |
||
| cvsdiveqd.x | |- ( ph -> X e. V ) |
||
| cvsdiveqd.y | |- ( ph -> Y e. V ) |
||
| cvsdiveqd.1 | |- ( ph -> A =/= 0 ) |
||
| cvsmuleqdivd.1 | |- ( ph -> ( A .x. X ) = ( B .x. Y ) ) |
||
| Assertion | cvsmuleqdivd | |- ( ph -> X = ( ( B / A ) .x. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvsdiveqd.v | |- V = ( Base ` W ) |
|
| 2 | cvsdiveqd.t | |- .x. = ( .s ` W ) |
|
| 3 | cvsdiveqd.f | |- F = ( Scalar ` W ) |
|
| 4 | cvsdiveqd.k | |- K = ( Base ` F ) |
|
| 5 | cvsdiveqd.w | |- ( ph -> W e. CVec ) |
|
| 6 | cvsdiveqd.a | |- ( ph -> A e. K ) |
|
| 7 | cvsdiveqd.b | |- ( ph -> B e. K ) |
|
| 8 | cvsdiveqd.x | |- ( ph -> X e. V ) |
|
| 9 | cvsdiveqd.y | |- ( ph -> Y e. V ) |
|
| 10 | cvsdiveqd.1 | |- ( ph -> A =/= 0 ) |
|
| 11 | cvsmuleqdivd.1 | |- ( ph -> ( A .x. X ) = ( B .x. Y ) ) |
|
| 12 | 11 | oveq2d | |- ( ph -> ( ( 1 / A ) .x. ( A .x. X ) ) = ( ( 1 / A ) .x. ( B .x. Y ) ) ) |
| 13 | 5 | cvsclm | |- ( ph -> W e. CMod ) |
| 14 | 3 4 | clmsscn | |- ( W e. CMod -> K C_ CC ) |
| 15 | 13 14 | syl | |- ( ph -> K C_ CC ) |
| 16 | 15 6 | sseldd | |- ( ph -> A e. CC ) |
| 17 | 16 10 | recid2d | |- ( ph -> ( ( 1 / A ) x. A ) = 1 ) |
| 18 | 17 | oveq1d | |- ( ph -> ( ( ( 1 / A ) x. A ) .x. X ) = ( 1 .x. X ) ) |
| 19 | 3 | clm1 | |- ( W e. CMod -> 1 = ( 1r ` F ) ) |
| 20 | 13 19 | syl | |- ( ph -> 1 = ( 1r ` F ) ) |
| 21 | 3 | clmring | |- ( W e. CMod -> F e. Ring ) |
| 22 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 23 | 4 22 | ringidcl | |- ( F e. Ring -> ( 1r ` F ) e. K ) |
| 24 | 13 21 23 | 3syl | |- ( ph -> ( 1r ` F ) e. K ) |
| 25 | 20 24 | eqeltrd | |- ( ph -> 1 e. K ) |
| 26 | 3 4 | cvsdivcl | |- ( ( W e. CVec /\ ( 1 e. K /\ A e. K /\ A =/= 0 ) ) -> ( 1 / A ) e. K ) |
| 27 | 5 25 6 10 26 | syl13anc | |- ( ph -> ( 1 / A ) e. K ) |
| 28 | 1 3 2 4 | clmvsass | |- ( ( W e. CMod /\ ( ( 1 / A ) e. K /\ A e. K /\ X e. V ) ) -> ( ( ( 1 / A ) x. A ) .x. X ) = ( ( 1 / A ) .x. ( A .x. X ) ) ) |
| 29 | 13 27 6 8 28 | syl13anc | |- ( ph -> ( ( ( 1 / A ) x. A ) .x. X ) = ( ( 1 / A ) .x. ( A .x. X ) ) ) |
| 30 | 1 2 | clmvs1 | |- ( ( W e. CMod /\ X e. V ) -> ( 1 .x. X ) = X ) |
| 31 | 13 8 30 | syl2anc | |- ( ph -> ( 1 .x. X ) = X ) |
| 32 | 18 29 31 | 3eqtr3d | |- ( ph -> ( ( 1 / A ) .x. ( A .x. X ) ) = X ) |
| 33 | 15 7 | sseldd | |- ( ph -> B e. CC ) |
| 34 | 33 16 10 | divrec2d | |- ( ph -> ( B / A ) = ( ( 1 / A ) x. B ) ) |
| 35 | 34 | oveq1d | |- ( ph -> ( ( B / A ) .x. Y ) = ( ( ( 1 / A ) x. B ) .x. Y ) ) |
| 36 | 1 3 2 4 | clmvsass | |- ( ( W e. CMod /\ ( ( 1 / A ) e. K /\ B e. K /\ Y e. V ) ) -> ( ( ( 1 / A ) x. B ) .x. Y ) = ( ( 1 / A ) .x. ( B .x. Y ) ) ) |
| 37 | 13 27 7 9 36 | syl13anc | |- ( ph -> ( ( ( 1 / A ) x. B ) .x. Y ) = ( ( 1 / A ) .x. ( B .x. Y ) ) ) |
| 38 | 35 37 | eqtr2d | |- ( ph -> ( ( 1 / A ) .x. ( B .x. Y ) ) = ( ( B / A ) .x. Y ) ) |
| 39 | 12 32 38 | 3eqtr3d | |- ( ph -> X = ( ( B / A ) .x. Y ) ) |