This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvsdiveqd.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| cvsdiveqd.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| cvsdiveqd.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| cvsdiveqd.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| cvsdiveqd.w | ⊢ ( 𝜑 → 𝑊 ∈ ℂVec ) | ||
| cvsdiveqd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| cvsdiveqd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | ||
| cvsdiveqd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| cvsdiveqd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| cvsdiveqd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| cvsdiveqd.2 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | ||
| cvsdiveqd.3 | ⊢ ( 𝜑 → 𝑋 = ( ( 𝐴 / 𝐵 ) · 𝑌 ) ) | ||
| Assertion | cvsdiveqd | ⊢ ( 𝜑 → ( ( 𝐵 / 𝐴 ) · 𝑋 ) = 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvsdiveqd.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | cvsdiveqd.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | cvsdiveqd.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | cvsdiveqd.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | cvsdiveqd.w | ⊢ ( 𝜑 → 𝑊 ∈ ℂVec ) | |
| 6 | cvsdiveqd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 7 | cvsdiveqd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | |
| 8 | cvsdiveqd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 9 | cvsdiveqd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 10 | cvsdiveqd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 11 | cvsdiveqd.2 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | |
| 12 | cvsdiveqd.3 | ⊢ ( 𝜑 → 𝑋 = ( ( 𝐴 / 𝐵 ) · 𝑌 ) ) | |
| 13 | 12 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐵 / 𝐴 ) · 𝑋 ) = ( ( 𝐵 / 𝐴 ) · ( ( 𝐴 / 𝐵 ) · 𝑌 ) ) ) |
| 14 | 5 | cvsclm | ⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| 15 | 3 4 | clmsscn | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → 𝐾 ⊆ ℂ ) |
| 17 | 16 7 | sseldd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 18 | 16 6 | sseldd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 19 | 17 18 11 10 | divcan6d | ⊢ ( 𝜑 → ( ( 𝐵 / 𝐴 ) · ( 𝐴 / 𝐵 ) ) = 1 ) |
| 20 | 19 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐵 / 𝐴 ) · ( 𝐴 / 𝐵 ) ) · 𝑌 ) = ( 1 · 𝑌 ) ) |
| 21 | 3 4 | cvsdivcl | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐵 ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → ( 𝐵 / 𝐴 ) ∈ 𝐾 ) |
| 22 | 5 7 6 10 21 | syl13anc | ⊢ ( 𝜑 → ( 𝐵 / 𝐴 ) ∈ 𝐾 ) |
| 23 | 3 4 | cvsdivcl | ⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ∈ 𝐾 ) |
| 24 | 5 6 7 11 23 | syl13anc | ⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) ∈ 𝐾 ) |
| 25 | 1 3 2 4 | clmvsass | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( ( 𝐵 / 𝐴 ) ∈ 𝐾 ∧ ( 𝐴 / 𝐵 ) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝐵 / 𝐴 ) · ( 𝐴 / 𝐵 ) ) · 𝑌 ) = ( ( 𝐵 / 𝐴 ) · ( ( 𝐴 / 𝐵 ) · 𝑌 ) ) ) |
| 26 | 14 22 24 9 25 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝐵 / 𝐴 ) · ( 𝐴 / 𝐵 ) ) · 𝑌 ) = ( ( 𝐵 / 𝐴 ) · ( ( 𝐴 / 𝐵 ) · 𝑌 ) ) ) |
| 27 | 1 2 | clmvs1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑌 ∈ 𝑉 ) → ( 1 · 𝑌 ) = 𝑌 ) |
| 28 | 14 9 27 | syl2anc | ⊢ ( 𝜑 → ( 1 · 𝑌 ) = 𝑌 ) |
| 29 | 20 26 28 | 3eqtr3d | ⊢ ( 𝜑 → ( ( 𝐵 / 𝐴 ) · ( ( 𝐴 / 𝐵 ) · 𝑌 ) ) = 𝑌 ) |
| 30 | 13 29 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐵 / 𝐴 ) · 𝑋 ) = 𝑌 ) |