This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| Assertion | clm1 | ⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 3 | 1 2 | clmsubrg | ⊢ ( 𝑊 ∈ ℂMod → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) |
| 4 | eqid | ⊢ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) | |
| 5 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 6 | 4 5 | subrg1 | ⊢ ( ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) → 1 = ( 1r ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 7 | 3 6 | syl | ⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 8 | 1 2 | clmsca | ⊢ ( 𝑊 ∈ ℂMod → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝑊 ∈ ℂMod → ( 1r ‘ 𝐹 ) = ( 1r ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 10 | 7 9 | eqtr4d | ⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ 𝐹 ) ) |