This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation expressing B covers A . Definition of covers in Kalmbach p. 15. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cvbr2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∧ ∀ 𝑥 ∈ Cℋ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) → 𝑥 = 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvbr | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) ) | |
| 2 | iman | ⊢ ( ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) → 𝑥 = 𝐵 ) ↔ ¬ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ∧ ¬ 𝑥 = 𝐵 ) ) | |
| 3 | anass | ⊢ ( ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ∧ ¬ 𝑥 = 𝐵 ) ↔ ( 𝐴 ⊊ 𝑥 ∧ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 = 𝐵 ) ) ) | |
| 4 | dfpss2 | ⊢ ( 𝑥 ⊊ 𝐵 ↔ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 = 𝐵 ) ) | |
| 5 | 4 | anbi2i | ⊢ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ↔ ( 𝐴 ⊊ 𝑥 ∧ ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 = 𝐵 ) ) ) |
| 6 | 3 5 | bitr4i | ⊢ ( ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ∧ ¬ 𝑥 = 𝐵 ) ↔ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) |
| 7 | 2 6 | xchbinx | ⊢ ( ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) → 𝑥 = 𝐵 ) ↔ ¬ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) |
| 8 | 7 | ralbii | ⊢ ( ∀ 𝑥 ∈ Cℋ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) → 𝑥 = 𝐵 ) ↔ ∀ 𝑥 ∈ Cℋ ¬ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) |
| 9 | ralnex | ⊢ ( ∀ 𝑥 ∈ Cℋ ¬ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ↔ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) | |
| 10 | 8 9 | bitri | ⊢ ( ∀ 𝑥 ∈ Cℋ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) → 𝑥 = 𝐵 ) ↔ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) |
| 11 | 10 | anbi2i | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ ∀ 𝑥 ∈ Cℋ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) → 𝑥 = 𝐵 ) ) ↔ ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 12 | 1 11 | bitr4di | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∧ ∀ 𝑥 ∈ Cℋ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) → 𝑥 = 𝐵 ) ) ) ) |