This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation expressing Y covers X . Definition of covers in Kalmbach p. 15. ( cvbr2 analog.) (Contributed by NM, 16-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrletr.b | |- B = ( Base ` K ) |
|
| cvrletr.l | |- .<_ = ( le ` K ) |
||
| cvrletr.s | |- .< = ( lt ` K ) |
||
| cvrletr.c | |- C = ( |
||
| Assertion | cvrval2 | |- ( ( K e. A /\ X e. B /\ Y e. B ) -> ( X C Y <-> ( X .< Y /\ A. z e. B ( ( X .< z /\ z .<_ Y ) -> z = Y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrletr.b | |- B = ( Base ` K ) |
|
| 2 | cvrletr.l | |- .<_ = ( le ` K ) |
|
| 3 | cvrletr.s | |- .< = ( lt ` K ) |
|
| 4 | cvrletr.c | |- C = ( |
|
| 5 | 1 3 4 | cvrval | |- ( ( K e. A /\ X e. B /\ Y e. B ) -> ( X C Y <-> ( X .< Y /\ -. E. z e. B ( X .< z /\ z .< Y ) ) ) ) |
| 6 | iman | |- ( ( ( X .< z /\ z .<_ Y ) -> z = Y ) <-> -. ( ( X .< z /\ z .<_ Y ) /\ -. z = Y ) ) |
|
| 7 | df-ne | |- ( z =/= Y <-> -. z = Y ) |
|
| 8 | 7 | anbi2i | |- ( ( ( X .< z /\ z .<_ Y ) /\ z =/= Y ) <-> ( ( X .< z /\ z .<_ Y ) /\ -. z = Y ) ) |
| 9 | 6 8 | xchbinxr | |- ( ( ( X .< z /\ z .<_ Y ) -> z = Y ) <-> -. ( ( X .< z /\ z .<_ Y ) /\ z =/= Y ) ) |
| 10 | anass | |- ( ( ( X .< z /\ z .<_ Y ) /\ z =/= Y ) <-> ( X .< z /\ ( z .<_ Y /\ z =/= Y ) ) ) |
|
| 11 | 2 3 | pltval | |- ( ( K e. A /\ z e. B /\ Y e. B ) -> ( z .< Y <-> ( z .<_ Y /\ z =/= Y ) ) ) |
| 12 | 11 | 3com23 | |- ( ( K e. A /\ Y e. B /\ z e. B ) -> ( z .< Y <-> ( z .<_ Y /\ z =/= Y ) ) ) |
| 13 | 12 | 3expa | |- ( ( ( K e. A /\ Y e. B ) /\ z e. B ) -> ( z .< Y <-> ( z .<_ Y /\ z =/= Y ) ) ) |
| 14 | 13 | anbi2d | |- ( ( ( K e. A /\ Y e. B ) /\ z e. B ) -> ( ( X .< z /\ z .< Y ) <-> ( X .< z /\ ( z .<_ Y /\ z =/= Y ) ) ) ) |
| 15 | 10 14 | bitr4id | |- ( ( ( K e. A /\ Y e. B ) /\ z e. B ) -> ( ( ( X .< z /\ z .<_ Y ) /\ z =/= Y ) <-> ( X .< z /\ z .< Y ) ) ) |
| 16 | 15 | notbid | |- ( ( ( K e. A /\ Y e. B ) /\ z e. B ) -> ( -. ( ( X .< z /\ z .<_ Y ) /\ z =/= Y ) <-> -. ( X .< z /\ z .< Y ) ) ) |
| 17 | 9 16 | bitrid | |- ( ( ( K e. A /\ Y e. B ) /\ z e. B ) -> ( ( ( X .< z /\ z .<_ Y ) -> z = Y ) <-> -. ( X .< z /\ z .< Y ) ) ) |
| 18 | 17 | ralbidva | |- ( ( K e. A /\ Y e. B ) -> ( A. z e. B ( ( X .< z /\ z .<_ Y ) -> z = Y ) <-> A. z e. B -. ( X .< z /\ z .< Y ) ) ) |
| 19 | ralnex | |- ( A. z e. B -. ( X .< z /\ z .< Y ) <-> -. E. z e. B ( X .< z /\ z .< Y ) ) |
|
| 20 | 18 19 | bitrdi | |- ( ( K e. A /\ Y e. B ) -> ( A. z e. B ( ( X .< z /\ z .<_ Y ) -> z = Y ) <-> -. E. z e. B ( X .< z /\ z .< Y ) ) ) |
| 21 | 20 | anbi2d | |- ( ( K e. A /\ Y e. B ) -> ( ( X .< Y /\ A. z e. B ( ( X .< z /\ z .<_ Y ) -> z = Y ) ) <-> ( X .< Y /\ -. E. z e. B ( X .< z /\ z .< Y ) ) ) ) |
| 22 | 21 | 3adant2 | |- ( ( K e. A /\ X e. B /\ Y e. B ) -> ( ( X .< Y /\ A. z e. B ( ( X .< z /\ z .<_ Y ) -> z = Y ) ) <-> ( X .< Y /\ -. E. z e. B ( X .< z /\ z .< Y ) ) ) ) |
| 23 | 5 22 | bitr4d | |- ( ( K e. A /\ X e. B /\ Y e. B ) -> ( X C Y <-> ( X .< Y /\ A. z e. B ( ( X .< z /\ z .<_ Y ) -> z = Y ) ) ) ) |