This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The covers relation implies no in-betweenness. ( cvnbtwn2 analog.) (Contributed by NM, 17-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrletr.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvrletr.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| cvrletr.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| cvrletr.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| Assertion | cvrnbtwn2 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ↔ 𝑍 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrletr.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvrletr.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | cvrletr.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 4 | cvrletr.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 5 | 1 3 4 | cvrnbtwn | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) |
| 6 | 5 | 3expia | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
| 7 | iman | ⊢ ( ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) → 𝑍 = 𝑌 ) ↔ ¬ ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ 𝑍 = 𝑌 ) ) | |
| 8 | anass | ⊢ ( ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ 𝑍 = 𝑌 ) ↔ ( 𝑋 < 𝑍 ∧ ( 𝑍 ≤ 𝑌 ∧ ¬ 𝑍 = 𝑌 ) ) ) | |
| 9 | simpl | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ Poset ) | |
| 10 | simpr3 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 11 | simpr2 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 12 | 2 3 | pltval | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑍 < 𝑌 ↔ ( 𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌 ) ) ) |
| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 < 𝑌 ↔ ( 𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌 ) ) ) |
| 14 | df-ne | ⊢ ( 𝑍 ≠ 𝑌 ↔ ¬ 𝑍 = 𝑌 ) | |
| 15 | 14 | anbi2i | ⊢ ( ( 𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌 ) ↔ ( 𝑍 ≤ 𝑌 ∧ ¬ 𝑍 = 𝑌 ) ) |
| 16 | 13 15 | bitrdi | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 < 𝑌 ↔ ( 𝑍 ≤ 𝑌 ∧ ¬ 𝑍 = 𝑌 ) ) ) |
| 17 | 16 | anbi2d | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ↔ ( 𝑋 < 𝑍 ∧ ( 𝑍 ≤ 𝑌 ∧ ¬ 𝑍 = 𝑌 ) ) ) ) |
| 18 | 8 17 | bitr4id | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ 𝑍 = 𝑌 ) ↔ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
| 19 | 18 | notbid | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ 𝑍 = 𝑌 ) ↔ ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
| 20 | 7 19 | bitr2id | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ↔ ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) → 𝑍 = 𝑌 ) ) ) |
| 21 | 6 20 | sylibd | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 → ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) → 𝑍 = 𝑌 ) ) ) |
| 22 | 21 | 3impia | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) → 𝑍 = 𝑌 ) ) |
| 23 | 1 3 4 | cvrlt | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 ) |
| 24 | 23 | ex | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 → 𝑋 < 𝑌 ) ) |
| 25 | 24 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 → 𝑋 < 𝑌 ) ) |
| 26 | 25 | 3impia | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 ) |
| 27 | breq2 | ⊢ ( 𝑍 = 𝑌 → ( 𝑋 < 𝑍 ↔ 𝑋 < 𝑌 ) ) | |
| 28 | 26 27 | syl5ibrcom | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑍 = 𝑌 → 𝑋 < 𝑍 ) ) |
| 29 | 1 2 | posref | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ≤ 𝑌 ) |
| 30 | 29 | 3ad2antr2 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ≤ 𝑌 ) |
| 31 | breq1 | ⊢ ( 𝑍 = 𝑌 → ( 𝑍 ≤ 𝑌 ↔ 𝑌 ≤ 𝑌 ) ) | |
| 32 | 30 31 | syl5ibrcom | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 = 𝑌 → 𝑍 ≤ 𝑌 ) ) |
| 33 | 32 | 3adant3 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑍 = 𝑌 → 𝑍 ≤ 𝑌 ) ) |
| 34 | 28 33 | jcad | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑍 = 𝑌 → ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ) ) |
| 35 | 22 34 | impbid | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ↔ 𝑍 = 𝑌 ) ) |