This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation expressing B covers A , which means that B is larger than A and there is nothing in between. Definition 3.2.18 of PtakPulmannova p. 68. ( cvbr analog.) (Contributed by NM, 18-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrfval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvrfval.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| cvrfval.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| Assertion | cvrval | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrfval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvrfval.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 3 | cvrfval.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 4 | 1 2 3 | cvrfval | ⊢ ( 𝐾 ∈ 𝐴 → 𝐶 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) } ) |
| 5 | 3anass | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) ) | |
| 6 | 5 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) } |
| 7 | 4 6 | eqtrdi | ⊢ ( 𝐾 ∈ 𝐴 → 𝐶 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) } ) |
| 8 | 7 | breqd | ⊢ ( 𝐾 ∈ 𝐴 → ( 𝑋 𝐶 𝑌 ↔ 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) } 𝑌 ) ) |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) } 𝑌 ) ) |
| 10 | df-br | ⊢ ( 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) } 𝑌 ↔ 〈 𝑋 , 𝑌 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) } ) | |
| 11 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 < 𝑦 ↔ 𝑋 < 𝑦 ) ) | |
| 12 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 < 𝑧 ↔ 𝑋 < 𝑧 ) ) | |
| 13 | 12 | anbi1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ↔ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) |
| 14 | 13 | rexbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) |
| 15 | 14 | notbid | ⊢ ( 𝑥 = 𝑋 → ( ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) |
| 16 | 11 15 | anbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ↔ ( 𝑋 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) ) |
| 17 | breq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 < 𝑦 ↔ 𝑋 < 𝑌 ) ) | |
| 18 | breq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑧 < 𝑦 ↔ 𝑧 < 𝑌 ) ) | |
| 19 | 18 | anbi2d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑦 ) ↔ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) |
| 20 | 19 | rexbidv | ⊢ ( 𝑦 = 𝑌 → ( ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑦 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) |
| 21 | 20 | notbid | ⊢ ( 𝑦 = 𝑌 → ( ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑦 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) |
| 22 | 17 21 | anbi12d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |
| 23 | 16 22 | opelopab2 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 〈 𝑋 , 𝑌 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) } ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |
| 24 | 10 23 | bitrid | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) } 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |
| 25 | 24 | 3adant1 | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) } 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |
| 26 | 9 25 | bitrd | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |