This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cvnbtwn | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 → ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvbr | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) ) | |
| 2 | psseq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 ⊊ 𝑥 ↔ 𝐴 ⊊ 𝐶 ) ) | |
| 3 | psseq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 ⊊ 𝐵 ↔ 𝐶 ⊊ 𝐵 ) ) | |
| 4 | 2 3 | anbi12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ↔ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) ) |
| 5 | 4 | rspcev | ⊢ ( ( 𝐶 ∈ Cℋ ∧ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) |
| 6 | 5 | ex | ⊢ ( 𝐶 ∈ Cℋ → ( ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) ) |
| 7 | 6 | con3rr3 | ⊢ ( ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) → ( 𝐶 ∈ Cℋ → ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ ¬ ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵 ) ) → ( 𝐶 ∈ Cℋ → ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) ) |
| 9 | 1 8 | biimtrdi | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 → ( 𝐶 ∈ Cℋ → ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) ) ) |
| 10 | 9 | com23 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐶 ∈ Cℋ → ( 𝐴 ⋖ℋ 𝐵 → ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) ) ) |
| 11 | 10 | 3impia | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 → ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) ) |