This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No element covers the lattice unity. (Contributed by NM, 8-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ncvr1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| ncvr1.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | ||
| ncvr1.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| Assertion | ncvr1 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ¬ 1 𝐶 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ncvr1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | ncvr1.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | |
| 3 | ncvr1.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 5 | 1 4 2 | ople1 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) 1 ) |
| 6 | opposet | ⊢ ( 𝐾 ∈ OP → 𝐾 ∈ Poset ) | |
| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → 𝐾 ∈ Poset ) |
| 8 | 1 2 | op1cl | ⊢ ( 𝐾 ∈ OP → 1 ∈ 𝐵 ) |
| 9 | 8 | ad2antrr | ⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → 1 ∈ 𝐵 ) |
| 10 | simplr | ⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → 𝑋 ∈ 𝐵 ) | |
| 11 | simpr | ⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → 1 ( lt ‘ 𝐾 ) 𝑋 ) | |
| 12 | eqid | ⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) | |
| 13 | 1 4 12 | pltnle | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → ¬ 𝑋 ( le ‘ 𝐾 ) 1 ) |
| 14 | 7 9 10 11 13 | syl31anc | ⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 ( lt ‘ 𝐾 ) 𝑋 ) → ¬ 𝑋 ( le ‘ 𝐾 ) 1 ) |
| 15 | 14 | ex | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( 1 ( lt ‘ 𝐾 ) 𝑋 → ¬ 𝑋 ( le ‘ 𝐾 ) 1 ) ) |
| 16 | 5 15 | mt2d | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ¬ 1 ( lt ‘ 𝐾 ) 𝑋 ) |
| 17 | simpll | ⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 𝐾 ∈ OP ) | |
| 18 | 8 | ad2antrr | ⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 1 ∈ 𝐵 ) |
| 19 | simplr | ⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 𝑋 ∈ 𝐵 ) | |
| 20 | simpr | ⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 1 𝐶 𝑋 ) | |
| 21 | 1 12 3 | cvrlt | ⊢ ( ( ( 𝐾 ∈ OP ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 1 ( lt ‘ 𝐾 ) 𝑋 ) |
| 22 | 17 18 19 20 21 | syl31anc | ⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) ∧ 1 𝐶 𝑋 ) → 1 ( lt ‘ 𝐾 ) 𝑋 ) |
| 23 | 16 22 | mtand | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ¬ 1 𝐶 𝑋 ) |