This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no element between the two arguments of the covers relation. ( cvnbtwn analog.) (Contributed by NM, 18-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrfval.b | |- B = ( Base ` K ) |
|
| cvrfval.s | |- .< = ( lt ` K ) |
||
| cvrfval.c | |- C = ( |
||
| Assertion | cvrnbtwn | |- ( ( K e. A /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> -. ( X .< Z /\ Z .< Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrfval.b | |- B = ( Base ` K ) |
|
| 2 | cvrfval.s | |- .< = ( lt ` K ) |
|
| 3 | cvrfval.c | |- C = ( |
|
| 4 | 1 2 3 | cvrval | |- ( ( K e. A /\ X e. B /\ Y e. B ) -> ( X C Y <-> ( X .< Y /\ -. E. z e. B ( X .< z /\ z .< Y ) ) ) ) |
| 5 | 4 | 3adant3r3 | |- ( ( K e. A /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X C Y <-> ( X .< Y /\ -. E. z e. B ( X .< z /\ z .< Y ) ) ) ) |
| 6 | ralnex | |- ( A. z e. B -. ( X .< z /\ z .< Y ) <-> -. E. z e. B ( X .< z /\ z .< Y ) ) |
|
| 7 | breq2 | |- ( z = Z -> ( X .< z <-> X .< Z ) ) |
|
| 8 | breq1 | |- ( z = Z -> ( z .< Y <-> Z .< Y ) ) |
|
| 9 | 7 8 | anbi12d | |- ( z = Z -> ( ( X .< z /\ z .< Y ) <-> ( X .< Z /\ Z .< Y ) ) ) |
| 10 | 9 | notbid | |- ( z = Z -> ( -. ( X .< z /\ z .< Y ) <-> -. ( X .< Z /\ Z .< Y ) ) ) |
| 11 | 10 | rspcv | |- ( Z e. B -> ( A. z e. B -. ( X .< z /\ z .< Y ) -> -. ( X .< Z /\ Z .< Y ) ) ) |
| 12 | 6 11 | biimtrrid | |- ( Z e. B -> ( -. E. z e. B ( X .< z /\ z .< Y ) -> -. ( X .< Z /\ Z .< Y ) ) ) |
| 13 | 12 | adantld | |- ( Z e. B -> ( ( X .< Y /\ -. E. z e. B ( X .< z /\ z .< Y ) ) -> -. ( X .< Z /\ Z .< Y ) ) ) |
| 14 | 13 | 3ad2ant3 | |- ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( ( X .< Y /\ -. E. z e. B ( X .< z /\ z .< Y ) ) -> -. ( X .< Z /\ Z .< Y ) ) ) |
| 15 | 14 | adantl | |- ( ( K e. A /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ -. E. z e. B ( X .< z /\ z .< Y ) ) -> -. ( X .< Z /\ Z .< Y ) ) ) |
| 16 | 5 15 | sylbid | |- ( ( K e. A /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X C Y -> -. ( X .< Z /\ Z .< Y ) ) ) |
| 17 | 16 | 3impia | |- ( ( K e. A /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> -. ( X .< Z /\ Z .< Y ) ) |