This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of covers relation "is covered by". (Contributed by NM, 18-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrfval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvrfval.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| cvrfval.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| Assertion | cvrfval | ⊢ ( 𝐾 ∈ 𝐴 → 𝐶 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrfval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvrfval.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 3 | cvrfval.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 4 | elex | ⊢ ( 𝐾 ∈ 𝐴 → 𝐾 ∈ V ) | |
| 5 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = ( Base ‘ 𝐾 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = 𝐵 ) |
| 7 | 6 | eleq2d | ⊢ ( 𝑝 = 𝐾 → ( 𝑥 ∈ ( Base ‘ 𝑝 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 8 | 6 | eleq2d | ⊢ ( 𝑝 = 𝐾 → ( 𝑦 ∈ ( Base ‘ 𝑝 ) ↔ 𝑦 ∈ 𝐵 ) ) |
| 9 | 7 8 | anbi12d | ⊢ ( 𝑝 = 𝐾 → ( ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 10 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( lt ‘ 𝑝 ) = ( lt ‘ 𝐾 ) ) | |
| 11 | 10 2 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( lt ‘ 𝑝 ) = < ) |
| 12 | 11 | breqd | ⊢ ( 𝑝 = 𝐾 → ( 𝑥 ( lt ‘ 𝑝 ) 𝑦 ↔ 𝑥 < 𝑦 ) ) |
| 13 | 11 | breqd | ⊢ ( 𝑝 = 𝐾 → ( 𝑥 ( lt ‘ 𝑝 ) 𝑧 ↔ 𝑥 < 𝑧 ) ) |
| 14 | 11 | breqd | ⊢ ( 𝑝 = 𝐾 → ( 𝑧 ( lt ‘ 𝑝 ) 𝑦 ↔ 𝑧 < 𝑦 ) ) |
| 15 | 13 14 | anbi12d | ⊢ ( 𝑝 = 𝐾 → ( ( 𝑥 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ↔ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) |
| 16 | 6 15 | rexeqbidv | ⊢ ( 𝑝 = 𝐾 → ( ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑥 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) |
| 17 | 16 | notbid | ⊢ ( 𝑝 = 𝐾 → ( ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑥 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) |
| 18 | 9 12 17 | 3anbi123d | ⊢ ( 𝑝 = 𝐾 → ( ( ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑥 ( lt ‘ 𝑝 ) 𝑦 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑥 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) ) |
| 19 | 18 | opabbidv | ⊢ ( 𝑝 = 𝐾 → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑥 ( lt ‘ 𝑝 ) 𝑦 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑥 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) } ) |
| 20 | df-covers | ⊢ ⋖ = ( 𝑝 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑥 ( lt ‘ 𝑝 ) 𝑦 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑥 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ) } ) | |
| 21 | 3anass | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) ) | |
| 22 | 21 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) } |
| 23 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 24 | 23 23 | xpex | ⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 25 | opabssxp | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) } ⊆ ( 𝐵 × 𝐵 ) | |
| 26 | 24 25 | ssexi | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) } ∈ V |
| 27 | 22 26 | eqeltri | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) } ∈ V |
| 28 | 19 20 27 | fvmpt | ⊢ ( 𝐾 ∈ V → ( ⋖ ‘ 𝐾 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) } ) |
| 29 | 3 28 | eqtrid | ⊢ ( 𝐾 ∈ V → 𝐶 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) } ) |
| 30 | 4 29 | syl | ⊢ ( 𝐾 ∈ 𝐴 → 𝐶 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) } ) |