This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of covers relation "is covered by". (Contributed by NM, 18-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrfval.b | |- B = ( Base ` K ) |
|
| cvrfval.s | |- .< = ( lt ` K ) |
||
| cvrfval.c | |- C = ( |
||
| Assertion | cvrfval | |- ( K e. A -> C = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ x .< y /\ -. E. z e. B ( x .< z /\ z .< y ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrfval.b | |- B = ( Base ` K ) |
|
| 2 | cvrfval.s | |- .< = ( lt ` K ) |
|
| 3 | cvrfval.c | |- C = ( |
|
| 4 | elex | |- ( K e. A -> K e. _V ) |
|
| 5 | fveq2 | |- ( p = K -> ( Base ` p ) = ( Base ` K ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( p = K -> ( Base ` p ) = B ) |
| 7 | 6 | eleq2d | |- ( p = K -> ( x e. ( Base ` p ) <-> x e. B ) ) |
| 8 | 6 | eleq2d | |- ( p = K -> ( y e. ( Base ` p ) <-> y e. B ) ) |
| 9 | 7 8 | anbi12d | |- ( p = K -> ( ( x e. ( Base ` p ) /\ y e. ( Base ` p ) ) <-> ( x e. B /\ y e. B ) ) ) |
| 10 | fveq2 | |- ( p = K -> ( lt ` p ) = ( lt ` K ) ) |
|
| 11 | 10 2 | eqtr4di | |- ( p = K -> ( lt ` p ) = .< ) |
| 12 | 11 | breqd | |- ( p = K -> ( x ( lt ` p ) y <-> x .< y ) ) |
| 13 | 11 | breqd | |- ( p = K -> ( x ( lt ` p ) z <-> x .< z ) ) |
| 14 | 11 | breqd | |- ( p = K -> ( z ( lt ` p ) y <-> z .< y ) ) |
| 15 | 13 14 | anbi12d | |- ( p = K -> ( ( x ( lt ` p ) z /\ z ( lt ` p ) y ) <-> ( x .< z /\ z .< y ) ) ) |
| 16 | 6 15 | rexeqbidv | |- ( p = K -> ( E. z e. ( Base ` p ) ( x ( lt ` p ) z /\ z ( lt ` p ) y ) <-> E. z e. B ( x .< z /\ z .< y ) ) ) |
| 17 | 16 | notbid | |- ( p = K -> ( -. E. z e. ( Base ` p ) ( x ( lt ` p ) z /\ z ( lt ` p ) y ) <-> -. E. z e. B ( x .< z /\ z .< y ) ) ) |
| 18 | 9 12 17 | 3anbi123d | |- ( p = K -> ( ( ( x e. ( Base ` p ) /\ y e. ( Base ` p ) ) /\ x ( lt ` p ) y /\ -. E. z e. ( Base ` p ) ( x ( lt ` p ) z /\ z ( lt ` p ) y ) ) <-> ( ( x e. B /\ y e. B ) /\ x .< y /\ -. E. z e. B ( x .< z /\ z .< y ) ) ) ) |
| 19 | 18 | opabbidv | |- ( p = K -> { <. x , y >. | ( ( x e. ( Base ` p ) /\ y e. ( Base ` p ) ) /\ x ( lt ` p ) y /\ -. E. z e. ( Base ` p ) ( x ( lt ` p ) z /\ z ( lt ` p ) y ) ) } = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ x .< y /\ -. E. z e. B ( x .< z /\ z .< y ) ) } ) |
| 20 | df-covers | |- |
|
| 21 | 3anass | |- ( ( ( x e. B /\ y e. B ) /\ x .< y /\ -. E. z e. B ( x .< z /\ z .< y ) ) <-> ( ( x e. B /\ y e. B ) /\ ( x .< y /\ -. E. z e. B ( x .< z /\ z .< y ) ) ) ) |
|
| 22 | 21 | opabbii | |- { <. x , y >. | ( ( x e. B /\ y e. B ) /\ x .< y /\ -. E. z e. B ( x .< z /\ z .< y ) ) } = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ ( x .< y /\ -. E. z e. B ( x .< z /\ z .< y ) ) ) } |
| 23 | 1 | fvexi | |- B e. _V |
| 24 | 23 23 | xpex | |- ( B X. B ) e. _V |
| 25 | opabssxp | |- { <. x , y >. | ( ( x e. B /\ y e. B ) /\ ( x .< y /\ -. E. z e. B ( x .< z /\ z .< y ) ) ) } C_ ( B X. B ) |
|
| 26 | 24 25 | ssexi | |- { <. x , y >. | ( ( x e. B /\ y e. B ) /\ ( x .< y /\ -. E. z e. B ( x .< z /\ z .< y ) ) ) } e. _V |
| 27 | 22 26 | eqeltri | |- { <. x , y >. | ( ( x e. B /\ y e. B ) /\ x .< y /\ -. E. z e. B ( x .< z /\ z .< y ) ) } e. _V |
| 28 | 19 20 27 | fvmpt | |- ( K e. _V -> ( |
| 29 | 3 28 | eqtrid | |- ( K e. _V -> C = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ x .< y /\ -. E. z e. B ( x .< z /\ z .< y ) ) } ) |
| 30 | 4 29 | syl | |- ( K e. A -> C = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ x .< y /\ -. E. z e. B ( x .< z /\ z .< y ) ) } ) |