This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the covers relation ("is covered by") for posets. " a is covered by b " means that a is strictly less than b and there is nothing in between. See cvrval for the relation form. (Contributed by NM, 18-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-covers | ⊢ ⋖ = ( 𝑝 ∈ V ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑝 ) ∧ 𝑏 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑎 ( lt ‘ 𝑝 ) 𝑏 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccvr | ⊢ ⋖ | |
| 1 | vp | ⊢ 𝑝 | |
| 2 | cvv | ⊢ V | |
| 3 | va | ⊢ 𝑎 | |
| 4 | vb | ⊢ 𝑏 | |
| 5 | 3 | cv | ⊢ 𝑎 |
| 6 | cbs | ⊢ Base | |
| 7 | 1 | cv | ⊢ 𝑝 |
| 8 | 7 6 | cfv | ⊢ ( Base ‘ 𝑝 ) |
| 9 | 5 8 | wcel | ⊢ 𝑎 ∈ ( Base ‘ 𝑝 ) |
| 10 | 4 | cv | ⊢ 𝑏 |
| 11 | 10 8 | wcel | ⊢ 𝑏 ∈ ( Base ‘ 𝑝 ) |
| 12 | 9 11 | wa | ⊢ ( 𝑎 ∈ ( Base ‘ 𝑝 ) ∧ 𝑏 ∈ ( Base ‘ 𝑝 ) ) |
| 13 | cplt | ⊢ lt | |
| 14 | 7 13 | cfv | ⊢ ( lt ‘ 𝑝 ) |
| 15 | 5 10 14 | wbr | ⊢ 𝑎 ( lt ‘ 𝑝 ) 𝑏 |
| 16 | vz | ⊢ 𝑧 | |
| 17 | 16 | cv | ⊢ 𝑧 |
| 18 | 5 17 14 | wbr | ⊢ 𝑎 ( lt ‘ 𝑝 ) 𝑧 |
| 19 | 17 10 14 | wbr | ⊢ 𝑧 ( lt ‘ 𝑝 ) 𝑏 |
| 20 | 18 19 | wa | ⊢ ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) |
| 21 | 20 16 8 | wrex | ⊢ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) |
| 22 | 21 | wn | ⊢ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) |
| 23 | 12 15 22 | w3a | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑝 ) ∧ 𝑏 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑎 ( lt ‘ 𝑝 ) 𝑏 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) ) |
| 24 | 23 3 4 | copab | ⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑝 ) ∧ 𝑏 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑎 ( lt ‘ 𝑝 ) 𝑏 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) ) } |
| 25 | 1 2 24 | cmpt | ⊢ ( 𝑝 ∈ V ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑝 ) ∧ 𝑏 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑎 ( lt ‘ 𝑝 ) 𝑏 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) ) } ) |
| 26 | 0 25 | wceq | ⊢ ⋖ = ( 𝑝 ∈ V ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑝 ) ∧ 𝑏 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑎 ( lt ‘ 𝑝 ) 𝑏 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) ) } ) |